Advertisement

智能网联汽车电子电气架构技术路线图-CAICV

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《智能网联汽车电子电气架构技术路线图》由CAICV组织编写,旨在为汽车行业提供前瞻性的技术指导,推动智能网联汽车的发展与应用。 智能网联汽车电子电气架构产业技术路线图由CAICV制定。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线-CAICV
    优质
    《智能网联汽车电子电气架构技术路线图》由CAICV组织编写,旨在为汽车行业提供前瞻性的技术指导,推动智能网联汽车的发展与应用。 智能网联汽车电子电气架构产业技术路线图由CAICV制定。
  • 及标准化探讨——2023年视角
    优质
    本研讨会聚焦于2023年的智能网联趋势下,深入探讨智能汽车的电子电气架构技术和相关标准制定,旨在推动行业技术创新与规范化发展。 智能汽车电子电气架构技术是指在成本、重量以及可靠性等方面的限制条件下,能够最佳地实现整车电子与电气需求的技术方案。它是整车开发的核心框架,为具体的项目中的模块设计提供整体解决方案及规范指导,并需具备前瞻性、平台化和可扩展性等特点。 该技术的重要性在于确保工程开发满足整车层面的需求,通过前期统筹规划来优化成本,在平台上实现模块化的基础之上保证技术的一致性,避免重复的研发与验证工作。智能汽车电子电气架构的发展趋势包括功能集中化、通信高速化、安全性和服务化等方面。其中,功能集中化意味着将多种功能集成到少量高性能计算单元中以提高效率并降低成本;通信高速化则要求实现快速的数据传输和通讯能力来满足实时数据处理的需求;安全性方面关注智能汽车的安全与可靠性,防止黑客攻击及信息泄露;而服务化是指分解为小的服务模块以提升灵活性和重用性。 开发流程包括需求分析、功能定义、具体实施、子系统设计以及零部件设计等阶段。采用软硬件分离的模式,并提供开放的数据接口和服务框架,打通车内外的信息链路,满足未来个性化的需求。标准化工作对于智能汽车电子电气架构技术来说至关重要,它确保了互操作性、可靠性和安全性。这包括制定标准、测试验证和认证认可等方面的工作。 展望未来,该领域将以通用计算平台为基础发展为面向服务的架构(SOA),形成开放式模块化且可扩展的设计思路;硬件方面将更加智能化与自动化,并伴随传感器数量的激增而提高整体智能水平;整车制造商也将开放接口给第三方访问数据,在云端整合车内及车外信息。总之,电子电气架构技术是推动智能汽车发展的重要引擎之一,它将在经济和社会层面上产生深远影响并带来显著效益。
  • 解析.docx
    优质
    本文档深入探讨了智能汽车电子电气架构的关键要素与发展趋势,旨在为行业专业人士提供全面的技术解析和实践指导。 智能汽车:电子电气架构详解 本段落档深入探讨了智能汽车的电子电气架构,从基础概念到复杂应用进行了全面解析。通过对现代车辆内部网络结构、数据传输方式以及软硬件集成技术等方面的分析,旨在帮助读者更好地理解智能网联汽车的核心技术及其发展趋势。
  • 线第二版.pdf
    优质
    《智能网联汽车技术路线图第二版》全面更新了智能网联汽车行业的发展方向与战略规划,深入分析当前市场趋势和技术挑战,为未来十年的技术创新和产业升级提供指导。 《智能网联汽车技术路线图2.0》旨在为未来十年中国智能网联汽车行业的发展提供指导方向和技术路径建议。该路线图强调了技术创新、产业升级以及跨界融合的重要性,以推动中国汽车产业向智能化、网联化转型。 具体而言,《智能网联汽车技术路线图2.0》提出了五大发展方向:一是提升车载计算平台与操作系统的核心竞争力;二是加快车用无线通信网络(V2X)的部署和应用;三是推进人机交互界面及用户体验优化的研究开发工作;四是加强车辆网络安全防护体系建设,确保数据安全和个人隐私保护;五是促进智能网联汽车标准法规体系构建和完善。 此外,《路线图》还设定了阶段性目标与重点任务,并提出了相应的保障措施。这不仅为行业内的企业提供了明确的发展方向和路径选择依据,也为政府相关部门制定相关政策规划提供了参考意见。
  • 线
    优质
    《智能电网的技术路线图》一书详细规划了构建高效、可靠及环保型电力网络的关键技术路径与实施策略。 为应对能源安全、气候变化及经济增长等方面的全球性挑战,亟需加快低碳能源技术的发展步伐。鉴于智能电网能够促进电动汽车、波动性可再生能源以及需求响应等多种低碳能源技术的进步与发展,其重要性尤为突出。本路线图概述了当前智能电网技术发展的现状,并规划了一条扩大智能电网应用的全球路径,同时提出了相关技术和政策制定方面的里程碑与建议。
  • 详解》读书笔记模板.pptx
    优质
    本资料为《智能汽车电子电气架构详解》一书的读书笔记,通过梳理书中核心概念和案例分析,帮助读者深入理解智能汽车电子电气架构的设计与实现。 《智能汽车电子电气架构详解》读书笔记 本书深入探讨了智能汽车电子电气架构的原理、技术、设计与管理方法,旨在助力汽车行业实现快速转型并明确未来发展方向。通过阅读此书,读者能够全面了解汽车电子电气系统的构成和分解策略,深刻理解复杂系统工程及思维方式在汽车产业的应用,并掌握相关的基本知识和技术基础。 以下是本书的主要知识点总结: 1. 系统概述、系统工程与系统思维 - 定义:一个由多个组件或子系统组成的具有特定功能的综合体。 - 工程实践:涵盖从设计到维护整个系统的生命周期管理过程。 - 思维方式:以整体视角进行问题识别和解决方案的设计。 2. 汽车电子电气架构组成 - 定义:包括汽车内所有电子设备及其连接网络在内的综合系统。 - 视图分类:逻辑视图、物理布局及功能流程等不同角度的展示方法。 - 分解策略:将整个体系拆分为若干个易于管理和理解的小型单元。 3. 电气架构定义与类别 - 定义:指电子设备在汽车中的排列和连接方式的设计方案。 - 类别划分:包括网络结构、硬件布局、功能规划以及软件框架等不同层面的分类方法。 4. 汽车电子电气架构的发展历程 - 驱动因素:从最初的汽车电子产品出现,到ECU(发动机控制单元)的应用,再到现代智能汽车架构的设计。 - 技术进步:芯片技术、通信网络和软件开发的进步对整个体系的影响及其重要性。 5. 智能车电子电气设计目标与原则 - 设计目的:确保满足车辆的性能标准以及用户体验需求。 - 基本准则:包括模块化设计、标准化接口及系统的可扩展能力等关键要素。 6. 开发流程和方法论 - 流程步骤:涵盖从需求分析到系统测试各个阶段的操作指南。 - 方法应用:敏捷开发(Agile)与Scrum框架在项目中的具体实施方式。 7. 项目的利益相关者管理 - 参与方角色:包括制造商、供应商及最终用户等多方主体。 - 协调策略:通过有效的沟通和协作机制来平衡各方的利益需求。
  • (E/E)报告:软件定义
    优质
    本报告深入探讨了汽车电子电气(E/E)架构的发展趋势及其在推动“软件定义汽车”理念中的核心作用。 硬件架构的升级有助于提高算力利用率并减少整体设计需求。通常在芯片参数设计阶段会根据实际需要设定,并留有一定的余量以确保冗余计算能力。这是因为汽车在运行过程中,大部分时间只有部分芯片执行运算任务且并未达到满负荷状态,导致整车大多数时候处于处理能力闲置的状态,从而使得算力有效利用率较低。例如,在倒车影像等泊车功能使用期间才需要进行特定的计算操作。 采用域控制器的方法可以在保证系统性能需求的同时降低总的硬件设计成本和功耗水平。从某种角度来看,这种架构对算力的需求可以类比为保险机制:如果个人想要抵御风险,则通常需准备大量资金作为储备;然而通过集体购买保险的方式,大家共同分担这部分开销并利用汇集的资金池来应对潜在的风险事件,从而大大降低了所需的整体资源量。 因此,在分布式芯片的布局中采用类似策略能够有效提升整体系统的效率和经济性。
  • (EEA)及AUTOSAR综述.pdf
    优质
    本PDF文档深入探讨了汽车电子电气架构(EEA)及其标准化解决方案AUTOSAR的发展与应用,分析了两者在现代汽车中的重要性。 汽车电子电气架构(EEA)与AUTOSAR是一份关于现代汽车内部复杂系统设计的文档。它详细介绍了如何通过标准化的方法来开发、集成以及维护车辆中的各种软件模块,以提高效率并减少成本。AUTOSAR作为一个开放的标准平台,旨在为汽车行业提供一种统一的方式来处理日益复杂的电子控制单元(ECU)需求,并促进不同供应商之间的合作与互操作性。
  • 的设计与评估.zip
    优质
    本资料深入探讨了汽车电子电气架构设计的关键要素及评估方法,旨在帮助工程师优化车辆性能和功能集成。 《汽车电子电气架构设计与评估》是一份关于汽车电子系统设计的文档或资料集锦,涵盖相关技术的设计思路、评估方法等内容。
  • 要求(SAE J3216)+ PDF
    优质
    《智能网联汽车技术要求》(SAE J3216) 是由美国汽车工程师学会(SAE International)发布的PDF文档,详细规定了智能网联汽车的设计与开发标准。 智能网联汽车技术是当前汽车行业的一大焦点领域,它整合了先进的信息技术、通信技术、控制技术和传感器技术,旨在提升行车安全、交通效率以及驾驶舒适性。SAE J3216是由美国汽车工程师学会(Society of Automotive Engineers)发布的一项重要标准,专门针对协同自动驾驶车辆(Connected Automated Vehicles, CAVs)的功能和应用场景制定了详细的技术要求。这一标准对于推动智能网联汽车的发展具有重要的指导意义。 理解SAE J3216的核心内容至关重要。该标准将自动驾驶系统(Automated Driving Systems, ADS)的自动化程度划分为六个等级,从0级(无自动化)到5级(完全自动化)。其中,0级和1级为辅助驾驶阶段;而2至4级则涵盖了部分至高度自动化的范畴;最后,达到5级时,则实现了在所有环境条件下无需人类驾驶员介入的全自动驾驶。这一分类框架为制造商、研发者及监管机构提供了统一的标准参考。 SAE J3216详细规定了不同自动化等级下车辆应具备的功能和性能指标。例如,在2级自动化阶段,车辆能够同时控制加速、刹车与转向,但要求人类驾驶员保持注意力;而在3级条件下,则允许在特定条件下驾驶员完全转移注意力,系统会在必要时接管驾驶任务;4级和5级则进一步提升至无须人类干预即可处理所有驾驶任务的程度,其中4级仅限于特定地理区域或操作条件内使用,而5级则不受任何限制。 除了自动化等级划分外,SAE J3216还强调了智能网联汽车的关键技术领域,包括感知与感知融合、决策规划、控制执行、车辆通信及网络安全等。其中,“感知与感知融合”指的是通过多种传感器(如雷达、激光雷达和摄像头)收集环境信息,并进行数据整合分析以实现对周围环境的精准识别;“决策规划”则涉及根据获取的信息制定合理的行驶策略,包括路径规划和避障策略等方面。“控制执行”关注的是如何将这些决策转化为实际车辆动作。 此外,“车辆通信”是智能网联汽车的关键特性之一。SAE J3216中详细描述了V2X(Vehicle-to-Everything)技术,涵盖了车与车(V2V)、车与基础设施(V2I)以及车与行人(V2P)之间的通信能力,这些功能使得车辆能够实时获取周围交通参与者的状态信息,进一步提升行驶安全性和效率。同时,“网络安全”是保障智能网联汽车安全性的重要环节,在标准中也提出了相关设计和测试要求,以防止恶意攻击及数据泄露。 总而言之,SAE J3216为智能网联汽车的开发、测试与评估提供了一套全面且权威的标准依据,涵盖了自动驾驶系统的自动化等级划分、功能性能指标设置、关键技术支持以及安全性等多个方面。随着技术进步和应用场景扩展,该标准将对推动智能网联汽车行业健康发展起到至关重要的作用。对于从事相关领域工作的人员而言,《SAE J3216_202005(1).pdf》文档无疑是一份非常有价值的参考资料。