本文主要讨论了差分滤波器的设计方法及其在高频电路中的应用,并深入分析了实现有效信号传输所需的阻抗匹配技术。
在电子设计领域,差分滤波器是一种广泛应用的信号处理技术,能够有效抑制共模噪声并提高信号质量。使用Advanced Design System (ADS) 进行差分滤波器的设计时,阻抗匹配是一个关键环节。不匹配的阻抗可能导致信号反射,并降低系统的整体性能。
理解什么是阻抗匹配至关重要:它指的是在电路输入和输出端之间保持一致的阻抗值以确保能量的最大传输。在 ADS 仿真中,这通常涉及保证芯片端口之间的输入和输出阻抗相等。例如,在描述的一个场景中,左侧芯片的输出阻抗接近于0欧姆,而右侧芯片的输入阻抗为100欧姆。为了匹配这种不一致的情况,我们可以在左侧输出端串联两个49.9欧姆的电阻来形成一个分压网络,并调整差分阻抗至100欧姆以与右侧输入阻抗相匹配。
然而,在仿真滤波器性能时,这两个串联电阻不应该被包含在内。因为实际系统中它们会导致信号衰减并影响ADC(模拟数字转换器)的关键性能指标如无杂散动态范围(SFDR)和信噪比(SNR)。SFDR衡量的是非谐波失真水平的重要参数,而SNR则反映信号与噪声的比例,对于高精度的数据采集系统来说这两个参数至关重要。
在选择分压电阻时需要谨慎:R1 和 R2 的值应尽可能小以减少信号衰减,并同时满足ADC端口的组合负载需求。通常最大不应超过 100 欧姆,以免对偏置电压造成过大影响。偏置电压的变化可能引起滤波器性能不稳定并进一步影响 SFDR 和 SNR。
设计过程中还需要考虑其他因素如带宽、通带纹波和阻带衰减等关键参数的优化。这些可以通过调整电容及电感值以及网络拓扑来实现,同时稳定性也是需要关注的重要方面之一,这通常通过计算增益带宽积和分析极点位置来进行评估以确保其在工作频率范围内稳定。
综上所述,在ADS中设计差分滤波器与阻抗匹配是一个综合性任务。它要求平衡信号完整性、系统噪声、滤波性能及电源稳定性等多方面因素,最终实现高效且高性能的差分滤波器系统。