Advertisement

改进的信赖域牛顿算法与信赖域牛顿CG算法_结合截断共轭梯度方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了一种改进的信赖域牛顿算法及与之结合的信赖域牛顿CG算法,并引入了截断共轭梯度技术,有效提升了非线性优化问题求解效率和精度。 求解大规模无约束最小化问题可以采用信赖域算法,并在该算法的信赖域子问题部分使用截断共轭梯度法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CG_
    优质
    本文介绍了一种改进的信赖域牛顿算法及与之结合的信赖域牛顿CG算法,并引入了截断共轭梯度技术,有效提升了非线性优化问题求解效率和精度。 求解大规模无约束最小化问题可以采用信赖域算法,并在该算法的信赖域子问题部分使用截断共轭梯度法。
  • 最速下降
    优质
    本文介绍了四种优化算法:最速下降法、共轭梯度法、牛顿法及拟牛顿法,探讨了它们的工作原理和应用场景。 掌握最速下降法、共轭梯度法、牛顿法及拟牛顿法的计算步骤;分析并比较这些搜索方法各自的优缺点。
  • 优化探究:拟、高斯-、LM
    优质
    本研究聚焦于四种经典优化算法——拟牛顿法、高斯-牛顿法、LM法及共轭梯度法,深入探讨其原理和应用,并比较各自优劣。 无约束最优化问题典型算法的MATLAB代码
  • MATLAB中FRBFGS拟
    优质
    本篇文章探讨了在MATLAB环境下应用FR共轭梯度法和BFGS拟牛顿法进行优化问题求解的技术细节,深入分析了两种方法的特点及适用场景。 在funf.m文件中,我使用了matlab_FR共轭梯度算法和BFGS拟牛顿算法来求解实例,并且手动计算了g值。大家可以尝试用自动方式求解。
  • 和阻尼C++实现PDF
    优质
    本PDF文档详细介绍了共轭梯度与阻尼牛顿法在求解优化问题中的应用,并提供了这些方法的C++语言实现代码。适合需要解决数值最优化问题的研究者和技术人员参考使用。 本程序包括阻尼牛顿法、共轭梯度法、PDFS 和 Pwoll 算法,适用于求解二元二次方程。
  • conjugate gradient_NT.zip_flagiyh__希尔伯特矩阵_
    优质
    本资源包提供了关于共轭梯度法、希尔伯特矩阵及牛顿方法的学习材料与代码示例,适用于深入理解这些数值计算中的关键算法和技术。 使用共轭梯度法和牛顿迭代法求解希尔伯特矩阵方程组。
  • 求最值最速下降
    优质
    本文探讨了三种经典的优化算法——最速下降法、牛顿法及共轭梯度法在求解函数极值问题中的应用,比较分析其优劣。 典型的最优化问题可以通过最速下降法、牛顿法和共轭梯度法来求解最小值。
  • shuzhidaishu.rar_最速下降 _矩阵运_ 下降矩阵
    优质
    本资源详细介绍并演示了最速下降法、共轭梯度法等优化算法,以及牛顿法和梯度下降在矩阵运算中的应用。 在数值分析领域,矩阵计算是极其重要的一部分,在优化问题和求解线性方程组方面尤为关键。“shuzhidaishu.rar”资源包含了关于矩阵计算的一些核心方法,例如共轭梯度法、最速下降法、带矩阵的梯度下降以及牛顿法。以下是这些方法的具体说明: 1. **共轭梯度法(Conjugate Gradient Method)**: 共轭梯度法是一种高效的算法,用于求解线性方程组 Ax=b,其中 A 是对称正定矩阵。该方法避免了直接计算矩阵 A 的逆,并通过迭代过程逐步逼近解。在每次迭代中,方向向量是基于上一步的残差和前一个梯度形成的共轭方向,确保了每步之间的正交性,从而加快收敛速度。 2. **最速下降法(Gradient Descent)**: 最速下降法是一种基本优化算法,用于寻找函数最小值。它通过沿当前梯度的负向更新参数来实现这一目标,即沿着使函数值减少最快的方向移动。在矩阵计算中,若目标函数是关于多个变量且可以表示为向量形式,则最速下降法则可用于求解多元函数极小化问题。 3. **带矩阵的梯度下降(Gradient Descent with Matrix)**: 在处理多变量或矩阵函数最小化的场景下,梯度下降法扩展到使用雅可比矩阵或导数矩阵。每次迭代中,参数向量根据负方向调整以减少目标函数值。 4. **牛顿法(Newtons Method)**: 牛顿法则是一种用于求解非线性方程的迭代方法,并且特别适用于寻找局部极值点。在处理矩阵问题时,我们利用泰勒级数展开,在当前位置近似为一个线性系统来解决问题,即使用公式 x_{k+1} = x_k - H_k^{-1} g_k,其中 H_k 是二阶导数组成的海森矩阵而 g_k 代表一阶导数组成的梯度向量。尽管牛顿法在全局收敛速度上可能不及共轭梯度法,但在局部范围内它通常表现出更快的速度。 “数值代数”文件中可能会包含实现这些算法的具体代码示例、理论解释和应用实例。掌握这些方法对于科学计算、机器学习及工程优化等领域的工作至关重要。通过实践这些算法,可以更深入地理解它们的运作机制,并在实际问题解决过程中灵活运用。
  • 优质
    改进的牛顿法是在经典牛顿法基础上发展起来的一种优化算法,通过调整迭代过程中的步长或方向,提高了数值计算中求解非线性方程组及最优化问题的效率与稳定性。 功能:使用修正牛顿法求解无约束问题。输入包括目标函数及其梯度、Hess矩阵以及初始点。输出是最优点、最优值及迭代次数。
  • :暗-MATLAB实现
    优质
    本研究提出了一种改良版牛顿法——暗牛顿算法,并提供了MATLAB代码实现。该方法优化了传统牛顿法的收敛性与稳定性,适用于复杂非线性方程求解。 多元牛顿法是一种在多变量优化问题中寻找函数局部极小值的有效算法,在此场景下我们关注的是MATLAB环境中实现的二维牛顿法(Newton2D.m)。作为一款强大的数值计算软件,MATLAB广泛应用于工程、科学计算以及数据分析等领域。 该方法的核心思想是迭代求解过程,通过构建目标函数的泰勒展开式来确定一个方向,使得沿着这个方向函数值下降最快。在二维情况下,则需要找到一个负梯度的方向,并且与海塞矩阵(Hessian矩阵)正交,在每一步迭代中更新起点以朝向该方向移动直至达到极小值点。 MATLAB程序Newton2D.m首先定义目标函数及其一阶偏导数(即梯度)和二阶偏导数(即海塞矩阵)。通常,这些可以通过符号计算或有限差分法来实现。接着设置初始点、收敛条件以及步长调整策略等参数。牛顿迭代公式可以表示为: \[ x_{k+1} = x_k - H_k^{-1}\nabla f(x_k) \] 其中\(x_k\)是当前的迭代点,\(H_k\)是在\(x_k\)处的海塞矩阵而\(\nabla f(x_k)\)则是目标函数在该位置的一阶导数。求解\(H_k^{-1}\)可能涉及矩阵求逆,在MATLAB中可以通过inv()函数完成;然而直接求逆效率较低且可能导致数值不稳定,因此常采用迭代方法如QR分解或高斯-赛德尔迭代。 在迭代过程中需要监测是否达到停止条件,比如函数值变化小于预设阈值或者达到了最大迭代次数。为了避免陷入局部极小点还可以使用随机初始点或线搜索技术等策略。 MATLAB程序Newton2D.m包含以下部分: 1. 定义目标函数f(x,y)。 2. 计算梯度grad_f(x,y)。 3. 海塞矩阵H(x,y)的计算。 4. 初始化迭代点x0和相关参数设置。 5. 主循环,包括负梯度方向的确定、更新迭代点以及检查停止条件等步骤。 6. 结果可视化部分,如绘制路径或三维图。 实践中牛顿法可能需要改进,例如引入拟牛顿方法来避免直接计算海塞矩阵逆。这不仅节省资源还能保持算法全局收敛性。 通过MATLAB实现的二维牛顿法则能够解决多变量优化问题并找到函数局部极小值点。掌握这一技术对于理解和处理实际工程问题是十分重要的,并且深入学习和实践Newton2D.m有助于增强对数值优化的理解,为进一步研究复杂的问题打下坚实基础。