Advertisement

激光辐照加热-FLUENT

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目利用计算流体动力学软件FLUENT,研究并模拟激光辐照对材料表面加热过程,分析温度分布及变化规律。 激光-FLuent案例文件大小为150MB,包含case、mesh和data三个部分。运行时请确保路径中不含中文字符,并使用最新版Ansys软件进行操作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -FLUENT
    优质
    本项目利用计算流体动力学软件FLUENT,研究并模拟激光辐照对材料表面加热过程,分析温度分布及变化规律。 激光-FLuent案例文件大小为150MB,包含case、mesh和data三个部分。运行时请确保路径中不含中文字符,并使用最新版Ansys软件进行操作。
  • 晶片__Comsol模拟_晶片__Comsol_
    优质
    本项目通过COMSOL多物理场仿真软件进行晶片的激光加热研究,探索不同参数下激光对晶片的热效应,优化加热工艺。 在IT行业中,特别是在微电子和材料科学领域,模拟与优化工艺过程至关重要。晶片加热是半导体制造中的一个关键环节,精确控制温度对器件性能影响巨大。激光加热作为一种非接触、高精度的加热方式,在晶片加工中被广泛应用。 COMSOL Multiphysics是一款强大的仿真软件,能够模拟各种工程和科学问题,包括热传递、光学和力学等多物理场现象。在使用COMSOL进行晶片激光加热时,可以详细模拟激光如何产生热量并预测晶片的温度分布及热应力变化。 激光加热涉及以下关键知识点: 1. **激光特性**:如功率、波长、脉冲持续时间和聚焦情况会直接影响加热效果。 2. **热传递模型**:在COMSOL中设置不同的传热机制,以描述热量如何扩散到晶片的其他部分。 3. **材料属性**:硅作为主要半导体材料,其物理特性对加热过程有重要影响。这些参数需准确输入仿真软件。 4. **边界条件**:合理设定边界条件来模拟实际环境中的散热情况。 5. **激光扫描策略**:不同的扫描路径和速度会影响热分布的均匀性和精确性。 6. **热应力分析**:不均受热会导致晶片翘曲或裂纹,通过仿真可以优化加热工艺以减少这些问题。 7. **优化设计**:利用仿真结果调整参数,以达到理想的加热效果。 COMSOL仿真的案例学习对于理解和应用该技术在微电子工程中的作用非常重要。结合激光和COMSOL的模拟技术为半导体制造过程提供了强大的工具,有助于提升器件性能及生产效率。
  • Rec.rar_laser源_rec_淬火__
    优质
    本研究探讨了使用laser作为加热源进行rec淬火工艺的应用与效果,重点分析了激光热源在提高材料表面性能方面的优势和挑战。 矩形激光热源和高斯热源在激光表面淬火和焊接中有广泛应用。
  • 诱导的等离子体
    优质
    激光诱导的等离子体加热研究了高强度激光与物质相互作用时产生的高温等离子体,探讨其在材料加工、核聚变能源及基础物理研究中的应用。 激光加热等离子体是一项高科技领域,利用高能量密度的激光束来激发其中的热核反应。等离子体是一种由自由电子和带正电荷的原子核组成的物质状态,在极高温度下能够发生核聚变反应,类似于太阳产生能量的过程。 苏修列别捷夫物理研究所的研究人员通过使用强激光辐射创造了高温条件,并成功记录了氘等离子体发射出的中子。这项实验的关键知识点包括: 1. 等离子体与激光加热:在高能辐射如激光的作用下,可以进一步将等离子体加热到极高的温度。在这种条件下,原子核能够克服库仑势垒发生聚变反应。 2. 热核反应和中子发射:高温下的氘核相互碰撞并聚变成氦核,并释放出能量巨大的中子。这一现象是热核研究的核心内容之一,而其中产生的高能中子则是直接证据。 3. 超短脉冲激光器与功率:文中提及的超矩脉冲激光器能够产生10^12瓦特级别的极短时间内(约10^-11秒)的能量输出。这种技术是加热等离子体并引发聚变反应的关键之一。 4. 光量子放大器使用:为了增加单个短脉冲能量,光量子放大器将激光脉冲提升至20焦耳的水平,这通常远高于普通条件下的值。 5. 激光控制技术:实验中利用克尔电光开关来精确发射和调控超短脉冲。这种精密的技术有助于确保加热等离子体时的能量准确度。 6. 中子探测设备:包括电子计数器、闪烁计数器在内的多种仪器被用来记录高能中子的事件,并通过光电倍增管将这些信号转化为电信号进行检测分析。 7. 放电器设计和聚焦技术:文中描述了放电器的设计以及激光如何经过透镜聚焦在电极之间,以产生等离子体。这种精确性对于实验的成功至关重要。 8. 高温等离子体研究前景:通过大功率的激光加热来实现高温条件是控制热核聚变反应的一条途径,有望为清洁能源生产提供新的解决方案。 这项技术涉及物理学、材料学和高能物理等多个学科领域,并且科学家们正努力探索如何利用该方法有效控制并应用热核聚变。
  • matlab透镜(retoujing.rar)_效应_thermal_晶体效应
    优质
    该资源包提供了一种基于MATLAB的模拟方法,用于分析激光照射下材料(如激光晶体)所产生的热透镜效应。通过数值仿真研究激光与物质相互作用时产生的温度分布和折射率变化,对理解激光器件的工作原理及优化设计具有重要意义。 激光晶体热透镜效应的相关计算对于学习激光器的人来说非常有用。
  • 焊接中FLUENT UDF源模型的能量和动量源项定义
    优质
    本文探讨了在激光焊接过程中使用FLUENT UDF创建热源模型的方法,并详细阐述了能量及动量源项的数学定义与实现。 激光焊接 FLUENT UDF 热源模型涉及能量源项和动量源项的定义。
  • Ansys-Fluent电弧焊接及增材制造数值模拟案例,涵盖焊接、熔覆与SLM Fluent模拟等内容
    优质
    本案例深入探讨了ANSYS-FLUENT在激光电弧焊接和增材制造中的应用,包括激光焊接、激光熔覆以及选择性激光熔化(SLM)的数值模拟技术。 Ansys-Fluent激光电弧焊接增材数值模拟案例包括了激光焊接、激光增材以及激光熔覆等内容。具体内容如下: 1. 激光焊接熔池演变(视频教程) 2. SLM激光熔池演变(视频教程) 3. 激光熔覆单道单层、两层及双道单层的程序讲解 4. 激光电弧复合熔滴与熔池耦合(视频教程) 5. 变“Z字路径激光焊温度场模型案例文件 这些内容涵盖了从基础到高级的不同层次,适用于不同需求的学习者和研究者。
  • 铝合金在长脉冲与连续联合下的温度场仿真
    优质
    本研究通过数值模拟方法探讨了铝合金材料在长脉冲和连续激光联合辐照作用下的温度分布特性,分析热影响区域及加热速率对材料性能的影响。 为了给长脉冲与连续激光联合作用模式的参数选择提供依据,采用ANSYS分析了2A12铝合金在长脉冲激光和连续激光共同辐照下的温度场变化。研究探讨了不同时间间隔(即两束激光加载起始时刻的时间差)以及不同光斑半径组合情况下,激光照射中心点最高温度及熔池尺寸的变化情况。 结果表明:随着两束激光之间时间间隔的增加,照射中心点的最高温度随之升高;然而,在特定的时间间隔之后,脉冲激光造成的温升会逐渐变得显著。此外,尽管峰值功率较高的长脉冲激光对最终的加热效果和熔池大小起决定性作用,但合适的连续激光预热(特别是当其功率密度达到105 W/cm²量级时)能够有效扩大熔池尺寸,并适度提高照射中心点温度。
  • Ansys-Fluent电弧焊接及增材制造的数值模拟案例,涵盖焊接、熔覆等技术,SLM Fluent模拟分析
    优质
    本案例通过ANSYS-FLUENT软件进行激光电弧焊接和增材制造的数值模拟,包括激光焊接与激光熔覆技术,并详细探讨了选区激光融化(SLM)工艺的仿真分析。 Ansys-Fluent是一个广泛应用于工程仿真领域的软件工具,它能够模拟流体流动、热传递等多种物理现象,在本案例中用于研究激光电弧焊接增材制造过程中的相关问题。 增材制造技术是一种通过逐层构建方式来生产复杂三维结构的先进制造方法。其中,激光焊接是利用高能量密度的激光束作为加热源进行材料连接的技术;而选择性激光熔化(SLM)则是使用精确控制的激光束将金属粉末逐层融化以形成所需部件的一种技术。 在这个案例中,Ansys-Fluent软件被用来模拟和研究上述过程中的关键现象——尤其是熔池演变情况。视频教程详细介绍了从单道到多层、多路径的不同场景下熔覆材料的行为变化规律,并通过具体程序代码解析来展示实现这些复杂工艺的编程技巧。 此外,“Z字形”激光焊接温度场模型是本案例的一个特色部分,它旨在通过对特定路径上温度分布的精确模拟优化焊接工艺参数并减少热应力引起的变形风险。同时案例中还对比分析了传统电弧焊技术与现代激光-电弧复合熔滴熔池耦合方法之间的差异。 该文件集不仅包含了演示文稿和图片资料以直观展示各种加工步骤,还包括了一些关于姿态解算技术和永磁同步电动机参数化模型的研究文档。尽管这些主题看似与焊接制造领域无关,但它们可能对跨学科的应用研究具有参考价值。 综上所述,这份案例材料为深入理解激光电弧焊接技术及其在增材制造中的应用提供了全面而系统的知识框架和实践指南。