Advertisement

微型计算机程序设计,属于计算机组成原理课程设计。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
请在现有的五条机器指令基础上,扩展以实现以下各项功能的机器指令,并详细设计这些新机器指令的格式,同时对原始微程序进行修改,使其能够成功执行所有预期的机器指令。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 简单模——
    优质
    本课程设计围绕基于简化模型机的微程序设计展开,旨在通过实践加深学生对计算机组成原理的理解。学生将学习并实现基本指令集的微操作序列编码,掌握硬件控制逻辑的设计方法,并通过实验验证所设计微程序的功能正确性。此项目不仅强化了理论知识的应用能力,还培养了解决复杂问题的实际技能。 在原有5条机器指令的基础上增加实现下述各功能的机器指令,设计相应的机器指令格式,并改写原来的微程序以使其能够运行所有的机器指令。
  • ——模
    优质
    《计算机组成原理——模型机课程设计》是一门实践性很强的课程,通过构建简化版计算机模型,帮助学生深入理解计算系统的硬件结构与工作原理。 【计算机组成原理---模型机课程设计】 在计算机科学与技术领域,计算机组成原理是一门核心课程,它深入探讨了计算机内部的工作机制。本课程设计旨在通过实现跳转指令来让学生理解计算机系统的底层运作,并增强对硬件和指令系统概念的认知。 跳转指令是计算机指令系统中的关键部分,可以改变程序的控制流,支持条件分支、循环等复杂的结构。在模型机的设计中,实现跳转指令涉及多个层面:包括设计指令集、微程序以及时序与数据流程分析。 1. **基本模型机系统分析与设计**: 学生需运用计算机组成原理的知识(如运算器、控制器和存储器)来构建一个基础的模型机。这个机器应该能够支持算术逻辑操作及控制流转移,包括跳转指令。 2. **指令集的设计**: 设计一套包含无条件和有条件跳转指令的集合,例如JMP, JZ等。这些指令通常含有目标地址以及可能存在的条件代码。学生需要考虑如何在二进制编码中表示这些信息。 3. **微程序设计**: 微程序是存储器中的控制序列,它们共同执行一条机器指令的功能。这包括确定每个微指令的格式(如操作码、控制字段等)和选择下一条要执行的微地址的方法。 4. **时序设计**: 学生需要规划模型机的时间顺序以确保每条命令正确无误地运行。对于跳转指令,时间序列尤其重要,因为它涉及更新程序计数器值并调整指令流水线。 5. **指令执行流程**: 描述跳转指令的每个阶段(取指、解码、执行和写回等)。在这些过程中,程序计数器(PC)的更改是关键步骤,可能发生在执行或写回阶段。 6. **软件HKCPT的应用**: 使用HKCPT工具进行联机和脱机仿真,观察并记录跳转指令的时间序列及累加器A和其他寄存器、存储区的数据变化。这有助于验证设计的有效性。 7. **课程总结**: 学生需要概述项目中的亮点、遇到的问题以及从中学到的经验教训。这对于反思策略和加深对计算机系统架构的理解至关重要。 通过这样的课程,学生不仅能够增强理论知识的深度,还能提升实践技能,为将来从事计算机系统的开发与优化工作奠定坚实的基础。
  • 优质
    《计算机组成原理课程设计》是一门结合理论与实践的教学活动,旨在通过实际操作加深学生对计算机硬件结构和工作原理的理解。 研制一台实验计算机需要满足以下要求: 1. 该计算机应配备键盘和打印机两种外部设备。 2. 外部设备与内存使用统一的操作指令,并且通过程序查询法来操作外设。 3. 运算器采用单累加器多通用寄存器的结构设计。 4. 操作数寻址方式包括直接地址、立即数地址、寄存器直接和寄存器间接等四种类型。 此外,计算机的指令系统应包含以下8条基本指令: - MOV Ri,A:将累加器A中的值传送到通用寄存器Ri中。 - MOV A,@Ri:从内存单元(由Ri指向)读取数据并将其送入累加器A。 - MOV A,#data:立即将一个常数放入累加器A内。 - LDA adda:将指定地址的数据装载到累加器A中。 - ST A,addr:把累加器中的内容存放到特定的内存位置上。 - JMP addr:无条件跳转至新的程序计数值(PC)处执行指令序列。 - JZ addr:仅当零标志位被置1时才进行相对跳跃,否则继续按常规顺序运行代码段;若满足条件则更新PC指向新地址,反之则加一后继续当前流程。 - INC A,Ri:累加器A的值增加,并将结果存储回寄存器Ri。 最后,该计算机应当具备编写程序的能力以实现以下功能: 从键盘接收一个二位数字(范围为0至9),然后通过打印机输出这个数值。
  • ——
    优质
    《计算机组成原理——课程设计》是一门基于理论与实践相结合的教学课程,旨在通过实际操作加深学生对计算机硬件结构和工作原理的理解。 设计一台具有微程序控制的8位模型机,要求指令系统包含10条以上指令。
  • 优质
    《计算机组成原理课程设计》是一门结合理论与实践的教学活动,旨在通过具体项目加深学生对计算机硬件结构和工作原理的理解。参与者将亲手搭建和调试简单的计算机系统,掌握汇编语言编程及基本指令集架构(ISA)的设计方法,为今后深入学习计算机科学打下坚实的基础。 计算机组成原理是一门深入探讨计算机硬件系统构造的学科,它涵盖了从最基本的逻辑门到复杂的处理器架构等多个方面。在本次课程设计中,我们主要关注多寄存器逻辑运算这一现代计算机体系结构中的重要组成部分。 多寄存器逻辑运算是指在同一时间或短时间内多个寄存器之间进行复杂的数据处理操作。作为计算机内部存储和处理数据的基本单元,寄存器能够快速读写以提高计算效率。在设计过程中,我们可能会涉及以下关键知识点: 1. **寄存器操作**:理解如何控制并行运算中的多个寄存器,并通过指令集架构(ISA)的设计以及控制逻辑来协调它们之间的通信。 2. **微程序设计**:利用存储于控制内存中的微程序定义CPU的操作。在多寄存器逻辑运算中,这些微程序可以用来协调各个寄存器的动作,实现复杂的计算任务。 3. **并行处理**:理解并行处理的概念及其技术应用(如流水线技术和超线程)对于提升计算机的运算速度和效率至关重要。 4. **数据通路设计**:优化CPU内部的数据传输路径能够显著提高多寄存器逻辑运算的性能。这包括对算术逻辑单元( ALU )、控制单元以及寄存器堆等组件的设计与连接方式的选择。 5. **逻辑门及组合逻辑**:通过基本的逻辑门(如AND,OR,NOT和XOR)构建更复杂的电路结构来实现多寄存器之间的运算操作。这些简单元件可以组成处理复杂任务所需的高级逻辑单元。 6. **实验接线图**:掌握物理连接方式有助于理解如何将各个组件组合成一个能够执行特定功能的系统,在实际操作中尤为关键。 7. **运行结果分析**:对完成设计后的测试数据进行仔细检查和性能评估是验证设计方案是否正确的必要步骤,包括但不限于错误排查与优化策略的应用。 通过详细的记录文档(如任务书及报告),学生可以全面回顾整个设计过程中的目标设定、思考路径、实施细节以及最终的实验结论。这些资料对于理解多寄存器逻辑运算的实际应用非常有价值。 本次课程设计的目标在于让学生深入了解计算机硬件的工作原理,特别是如何利用多寄存器逻辑运算实现高效的计算,并提供实际操作经验以备将来在相关领域内进行更深入的设计与优化工作时使用。
  • 报告
    优质
    本课程报告聚焦于微程序设计在计算机组成原理中的应用,深入探讨了控制单元的设计与实现,分析了如何通过微指令和微命令来优化CPU性能。报告详细阐述了微程序技术的基本概念、架构及其实现方法,并结合具体实例进行说明,旨在帮助读者理解并掌握基于微程序的计算机系统设计原理和技术细节。 通过设计微程序,其中包括5条我自己设计的简单微指令。
  • 控制器
    优质
    本课程设计围绕微程序控制器展开,深入探讨了计算机系统的核心组成部分及其工作原理。学生将学习如何设计并实现一个简单的微程序控制系统,通过实践加深对计算机硬件架构的理解和掌握。 本资源包括定长CPU周期及三数据总线结构运算器的嵌入式CISC模型机的相关内容:微程序控制器(proteus模拟)、微程序控制器框图以及总图。运行环境为proteus8 professional与windows10系统。 配套博文详细介绍了该模型机的设计和实现细节,具体内容可参考相关文章获取更多信息。
  • —— CISC模
    优质
    本课程设计基于CISC(复杂指令集计算)模型构建一台模拟计算机,深入探讨其内部结构与工作原理。参与者将掌握高级指令系统的设计及其在实际应用中的优势和局限性。 模型机运行环境:Proteus8 Professional、Windows10;采用定长CPU周期、三数据总线结构运算器的嵌入式CISC模型机。该模型机规定使用定点补码表示法来表示数据,且字长为8位。设计了四大类指令共十六条,包括算术逻辑指令、I/O指令、访问及转移指令和停机指令。
  • (简易模
    优质
    本课程设计旨在通过构建简易模型机,深入理解计算机组成原理。学生将亲手实践,掌握指令集架构、数据通路及控制单元的设计与实现方法。 计算机组成原理课程设计(简单模型机设计)
  • CISC模
    优质
    本课程设计围绕复杂指令集计算(CISC)架构,深入探讨计算机硬件与软件之间的交互机制,旨在通过实践加深学生对计算机组成原理的理解。 计算机组成原理的课程设计报告介绍了使用MAX+plus2软件设计简单CISC模型的过程。