Advertisement

半导体产业系列研究:功率半导体国产化进程中的稳健前行.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本报告深入分析了中国功率半导体行业的现状与发展趋势,探讨了国产化进程中企业的挑战与机遇,展示了行业稳健前行的步伐。 半导体产业系列研究:长风破浪,功率半导体国产化之路稳中求进.pdf 该文档深入探讨了中国半导体产业发展现状及未来趋势,特别聚焦于功率半导体领域的国产化进程。报告分析了当前面临的机遇与挑战,并提出了推动行业稳步前进的策略建议。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本报告深入分析了中国功率半导体行业的现状与发展趋势,探讨了国产化进程中企业的挑战与机遇,展示了行业稳健前行的步伐。 半导体产业系列研究:长风破浪,功率半导体国产化之路稳中求进.pdf 该文档深入探讨了中国半导体产业发展现状及未来趋势,特别聚焦于功率半导体领域的国产化进程。报告分析了当前面临的机遇与挑战,并提出了推动行业稳步前进的策略建议。
  • 报告:MOSFET
    优质
    本报告深入分析了功率MOSFET市场的发展趋势、技术进步和应用前景,旨在为行业投资者提供战略参考。 在11月21日发布的《功率半导体总览:致更高效、更精密、更清洁的世界》报告中,我们向读者介绍了功率半导体这一现代社会电气化运作的核心,并对其未来的发展趋势进行了预测。在这篇后续的报告里,我们将重点介绍功率MOSFET——目前全球市场占比最大的功率器件细分行业。 根据载流子种类与掺杂方式的不同,MOSFET可以分为四种类型:N沟道增强型、N沟道耗尽型、P沟道增强型和P沟道耗尽型。在《总览》报告中我们提到,功率半导体行业是一个需求驱动的行业,因此功率MOSFET行业的市场空间主要来自于对工作频率为10kHz以上及输出功率5kW以下的功率器件的需求。
  • 报告-大重器
    优质
    本报告聚焦于功率半导体产业的发展趋势与技术突破,旨在探讨其在国家重大基础设施建设中的关键作用及未来前景。 支持集成电路国家大基金肩负着推动半导体产业发展的重要使命。功率半导体作为产值高达200亿美元的行业板块,在高铁动力系统、汽车动力系统以及消费及通讯电子系统的自主可控性方面扮演关键角色,其战略地位不容忽视。因此,可以预见国家大基金会全力扶持这一领域。 回顾过去三年中,集中投资细分领域的龙头企业一直是国家大基金的投资策略之一。我们预计在资本的推动下,我国功率半导体行业的领军企业将加速整合海外优质资源,并加快向高端市场迈进的步伐。 目前全球范围内掌握技术优势的功率半导体供应商主要分布在北美、欧洲和日本等地区。而中国大陆及台湾地区的厂商则多集中在二极管、晶闸管以及低压MOSFET这类低端功率器件领域,相比之下,在IGBT(绝缘栅双极型晶体管)和中高压MOSFET等领域的发展相对滞后。
  • 芯片专题报告(20页).zip
    优质
    本报告深入探讨了功率半导体芯片的技术发展趋势及市场需求,并分析了国产化进程中的机遇与挑战。报告共20页,为读者提供了详尽的数据和见解。 芯片国产化专题报告:功率半导体(20页)
  • 技术
    优质
    半导体生产技术是指用于制造半导体器件和集成电路的一系列工艺流程和技术方法,涵盖材料制备、晶圆加工、光刻、蚀刻等多个环节。 《半导体制造技术》一书详细回顾了半导体发展的历史,并融入了当今最新的技术资料。该书在学术界和工业界的评价都很高。全书共分20章,根据应用于半导体制造的主要技术分类来安排章节内容,包括与半导体制造相关的基础技术信息;总体流程图的工艺模型概况,通过流程图将硅片制造的主要领域连接起来;具体讲解每一个主要工艺;集成电路装配和封装的后部工艺概述。此外,各章还提供了关于质量测量和故障排除的问题,这些都是在实际硅片制造过程中会遇到的实际问题。
  • 优质
    简介:半导体生产的流程包括晶圆制造、光刻、蚀刻、离子注入和金属化等步骤,最终形成集成电路。每一步都要求极高的精度和技术水平。 微机电制作技术,特别是基于硅半导体的微细加工技术(silicon-based micromachining),其起源与半导体组件的制程技术密切相关。因此,在探讨这类工艺之前,有必要先对这些基础的技术进行介绍,以免出现因缺乏背景知识而产生的理解障碍。
  • 工艺流
    优质
    半导体生产工艺流程涵盖了晶圆制造、光刻、蚀刻、离子注入、薄膜沉积、金属化及封装测试等关键步骤,是实现芯片功能的核心过程。 半导体制造工艺流程是现代电子科技的核心组成部分,涉及众多复杂的步骤和技术,它是集成电路设计与生产的关键环节。这个过程将纯净的硅材料转化为复杂微电子器件,如晶体管、电阻、电容等,并构建出各种功能丰富的芯片。 以下是详细的半导体制造工艺流程: 1. **硅晶圆准备**:从高纯度多晶硅中拉制单晶硅棒,然后切割成薄片,这些薄片即为硅晶圆。 2. **晶圆清洗**:在进行后续步骤前需彻底清洁硅晶圆表面的杂质和颗粒,以确保工艺精度。 3. **氧化**:将硅置于高温环境中使其与氧气反应形成二氧化硅层。此层作为绝缘或保护用途使用。 4. **光刻**:通过曝光特定波长光线使光刻胶发生化学变化,并利用显影液清除未曝光部分,从而在晶圆上转移电路图案。 5. **蚀刻**:将经过光刻处理后的晶圆放入蚀刻机中,采用化学气体或等离子体技术去除暴露的硅或其他材料,形成所需的电路结构。 6. **掺杂**:通过离子注入或扩散工艺向硅片内部引入杂质原子以改变其导电性。此步骤用于生成P型和N型半导体区域。 7. **金属化**:在晶圆上沉积铝或铜等金属层,用作连接各个半导体元件的电路网络基础。 8. **互连**:使用多层布线及通孔技术实现不同层次间的电路连接。 9. **化学机械抛光(CMP)**:通过化学品和物理摩擦手段平整化晶圆表面,确保各层之间的精确对准。 10. **测试与切割**:完成所有步骤后需对每个芯片进行电气性能的检测。合格的产品将被切分出来。 11. **封装**:切割下来的单个芯片会被安置在塑料或陶瓷外壳内,并连接外部引脚以供与其他电子元件交互使用。 12. **最终测试**:封装后的芯片再次接受严格的性能和可靠性验证,确保其符合设计规范要求。 半导体制造工艺流程涵盖了物理、化学及光学等多个学科的知识体系,是一项高度集成且精密的技术。随着科技的进步,该领域不断引入如FinFET技术或3D堆叠等创新方法来进一步提升芯片的效能与集成度。对于有兴趣深入了解和学习这一领域的读者来说,上述内容提供了宝贵的见解。
  • 关于器件场限环.pdf
    优质
    本文档深入探讨了功率半导体器件中场限环现象的机理和特性,并分析其对器件性能的影响,为优化设计提供理论依据。 本段落主要探讨了功率半导体器件中的场限环(Field Limiting Ring, FLR)结构理论及其相关研究。FLR是一种用于增强功率半导体器件阻断能力的常见设计方式,研究人员通过深入分析其理论基础,总结出影响击穿电压的关键因素,并详细讨论在给定击穿电压条件下场限环电场分布及峰值电场表达式。 此外,本研究还提出了确定FLR数量的方法,包括圆柱坐标对称解和MEDICI半导体器件模拟工具的应用。研究表明表面电荷对于带FLR的功率半导体器件击穿电压以及优化环间距具有显著影响。因此,研究人员进行了大量分析与模拟工作,探讨了FLR结构在实际应用中的效果,并为设计更优的FLR提出了一系列建议。 鉴于功率半导体器件在电力电子领域的广泛应用及其重要性,对FLR结构进行理论研究和实践探索不仅具备重要的学术价值也具有广泛的实用意义。随着技术进步,高压功率半导体器件的应用范围日益扩大至汽车、消费电子产品、开关电源及工业控制等多个领域。然而,在现代半导体制造工艺中采用平面型终端设计导致结深较浅且边缘弯曲的问题使得耐压性能下降,并影响到安全工作区的大小和设备稳定性。 因此,增强功率半导体器件的阻断能力成为当前研究的重点之一。本段落通过对FLR结构理论的研究及应用探讨了这一问题的有效解决方案。希望本项研究成果能够推动该领域的发展并提升其可靠性和效能。 总体而言,本研究的主要贡献包括:(1)对FLR结构理论进行了详尽分析,并总结出影响击穿电压的关键因素;(2)提出了确定场限环数量的多种方法;(3)深入探讨了表面电荷对于带FLR器件性能的影响以及如何优化环间距;(4)讨论并提出了一些设计和应用FLR结构的具体建议。研究结果与现有文献中的数值模拟数据一致,为后续的设计工作提供了宝贵的指导信息。
  • 金属函数
    优质
    本文探讨了金属与半导体接触时半导体功函数的影响,分析其在形成金属-半导体结过程中的作用及意义,为相关器件性能优化提供理论依据。 资源被浏览查阅142次。半导体的功函数E0与费米能级之差称为半导体的功函数。用Χ表示从Ec到E0的能量间隔:称χ为费米能级和功函数之间的能量间隔。
  • ATE自动测试报告
    优质
    本报告深入分析了全球及中国半导体ATE(Automatic Test Equipment)自动化测试行业的现状、趋势与前景。涵盖了市场规模、竞争格局和技术创新等方面的内容,为业内人士提供详实的数据支持和战略建议。 半导体测试是设计与生产过程中的关键环节。它通过测量半导体的输出响应并与预期输出进行比较来确定或评估集成电路的功能和性能,主要涉及电学参数测试。每个芯片通常需要经历两类测试: 一是参数测试,这种测试用于确认芯片管脚是否符合各种上升时间、下降时间、建立时间和保持时间以及高低电压阈值和电流规范的要求。它包括直流(DC)参数测试与交流(AC)参数测试。其中,直流参数测试涵盖短路检测、开路检查及最大电流试验等项目;而交流参数测试则包含传输延迟评估、建立时间和保持时间验证、功能速度测量等内容。这些测试通常都具有工艺相关性。 CMOS输出电压的测定是此类测试中的一个重要方面。