Advertisement

Matlab阻抗控制源码。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该项目提供多自由度机器人阻抗控制的Matlab源程序,旨在实现机器人运动轨迹的精确控制。通过利用Matlab平台,用户可以方便地进行仿真和调试,从而优化控制算法并提升机器人系统的性能。该源码集为研究者和工程师提供了一个强大的工具,用于开发和测试各种阻抗控制策略。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Matlab
    优质
    本代码为基于MATLAB的阻抗控制实现,适用于机器人操作力学研究与仿真,提供详细的注释和示例数据以帮助用户快速上手。 多自由度机器人阻抗控制的Matlab源码提供了一种实现复杂机械臂运动规划的方法,通过调整机器人的刚性和阻尼特性来优化其与环境交互的能力。这种方法在需要精确力控制的应用中特别有用,比如装配任务、手术辅助和人机协作等领域。
  • 模型与恒模型的MATLAB.zip
    优质
    本资源包含用于实现阻抗控制模型和恒阻抗模型的MATLAB代码,适用于机器人技术、机电一体化系统及生物医学工程领域的研究与开发。 阻抗控制模型,恒阻抗模型,matlab源码.zip
  • 模型与恒模型(MATLAB
    优质
    本教程聚焦于利用MATLAB软件实现阻抗控制模型及恒阻抗模型的分析与设计,深入探讨其原理与应用。 阻抗控制在机械臂打磨过程中能够保持恒定的力,并具有一定的适应性。
  • MATLAB】机械臂MATLAB仿真
    优质
    本项目提供了一套基于MATLAB的机械臂阻抗控制系统仿真代码,旨在研究和验证不同参数设置下机械臂的动态响应与稳定性。 机械臂阻抗控制的MATLAB仿真代码。
  • 计算——Polar Si9000.rar_Polar-Si9000_breathvdd_si9000_
    优质
    本资源提供Polar公司Si9000软件在呼吸式虚拟动态偏压(breathvdd)技术下的阻抗控制计算方法,适用于电子设计自动化中的信号完整性分析。 关于基于SI9000的阻抗控制计算资料以及各种类型的微带线阻抗控制计算工具及其使用详解的相关内容进行了整理和分析。这些资源提供了详细的指导和支持,帮助工程师们更好地理解和应用相关的技术知识,以优化电路设计中的信号完整性问题。
  • MATLAB】机械臂PD与MATLAB仿真
    优质
    本资源提供了一套基于MATLAB的机械臂PD及阻抗控制仿真实现代码,旨在为机器人学研究者和工程师们进行算法验证与系统设计时提供便捷有效的工具支持。 MATLAB是由MathWorks公司开发的一款高性能数值计算与可视化软件,在工程计算、控制设计、信号处理与通讯、图像处理以及金融建模等领域有着广泛应用。它提供了一个交互式的环境,用户可以利用内置函数快速进行算法开发、数据可视化和数据分析等任务。 本次分享的文件名为“机械臂PD控制阻抗控制MATLAB仿真”,主要涉及机械臂控制系统的设计及仿真内容。PD(比例-微分)控制是一种常见的控制器策略,用于减少系统稳态误差并提高动态响应速度。通过调整比例与微分增益,可以有效提升系统的性能和稳定性。 相比之下,阻抗控制则更为先进,它不仅关注于运动轨迹的精确控制,还涉及对外界环境力矩作用下的适应性反应。在机械臂领域中,这种策略允许设备根据外部力量进行动态调节以实现更自然的操作交互。例如,在抓取物体或执行精细操作时,该技术能够使机械臂更好地适应不同形状和材质的对象,减少潜在的冲击与损伤。 文件中的源代码包含了一个关于PD控制及阻抗控制的MATLAB仿真模型。用户可以通过此工具对机械臂控制系统进行设计测试。这些程序可能涵盖了动力学建模、控制器参数设定以及仿真实验等多个方面。 利用此类模拟资源,研究人员和工程师可以无需实际硬件设备便能评估不同条件下系统的性能表现,从而节省成本并加快研发进度。同时,通过调整代码中的各项参数值,还可以探究不同的控制策略对机械臂效率的影响,并为优化设计方案提供理论依据与实验基础。 此外,在MATLAB环境下进行的仿真可以通过图形界面直观展示结果,包括运动轨迹、力矩反应曲线等关键信息。这些可视化效果有助于更好地理解工作原理和控制器性能表现,同时也能作为验证模型正确性的辅助手段或用于教学培训目的。 对于控制工程学、机器人技术以及机械设计等相关领域的工作者而言,这份MATLAB源代码是一个非常有价值的参考资料。它不仅能够帮助开发新的控制系统策略,并且促进了相关知识的传播与教育推广工作。
  • MATLAB中的-Ceis:可电化学谱(cEIS)系统
    优质
    Ceis是一款基于MATLAB开发的工具箱,专门用于实现可控电化学阻抗谱(cEIS)系统的模拟与分析。该工具能够帮助科研人员及工程师便捷地设计和测试复杂的电化学实验。 MATLAB阻抗控制代码用于可控电化学阻抗谱(cEIS)装置。该装置由伊朗德黑兰沙希德·贝赫塞蒂大学电气工程系的E.Sadeghi、MHZand、M.Hamzeh和M.Saif,以及加拿大安大略省温莎市的温莎大学电气工程系的SMMAlavi共同开发。本存储库提供了上述手稿中测试1和测试2的MATLAB代码。每次测试开始时都会加载电流和电压数据,请参考相关手稿获取更多关于测试与数据的信息。 该MATLAB代码通过使用快速傅里叶变换(FFT)及系统识别方法来计算阻抗谱。在测试1中,估算了一阶Randles等效电路模型(ECM)。而在测试2中,则估算了包含一阶和二阶的Randles ECM,并对其准确性进行了比较。 一阶Randles ECM可以表示为: \[ Z = \frac{V_{m1} * s + m_0}{I_s + n_0} \] 其中,\( R_\infty = m_1, R_1 = \frac{m_0 - m_1}{n_0}, C_1 = \frac{1}{(n_0 * R_1)} \)。
  • 测试
    优质
    阻抗控制测试是一种用于评估和优化电子电路及系统性能的技术,通过精确测量信号传输过程中的阻抗变化来确保数据传输的稳定性和效率。 阻抗控制程序测试 这段文字已经按照要求进行了处理,去除了所有联系信息和其他链接。如果需要更详细的描述或者有特定的编程需求,请告知以便进一步帮助。
  • MATLAB-MSRDM最终项目: MSRDM_final_project
    优质
    MSRDM_final_project 是一个使用 MATLAB 开发的阻抗控制代码库,专为机械系统的设计与研究提供支持。该项目集成了先进的算法和模型,旨在优化系统的交互性能和稳定性。 MATLAB阻抗控制代码MSRDM最终项目 作者:Daniel Tar 主管:Emmanuel Dean博士、Simon Armleder、Maximilian Bader 日期:慕尼黑,2021年3月18日 图片和视频位于res文件夹中。先决条件包括ROS Melodic util文件夹中提供的库。 准备步骤: - 导航到项目根目录 - 使用`catkin_make`命令编译项目 获取bash设置文件的sourcedevel/setup.bash: 如果`catkin_make`命令未成功,请尝试运行: ``` catkin_make --pkg object_msgs ``` 如何运行程序: 在单独的终端中,按照以下步骤执行(请不要忘记提供setup.bash文件的来源): 1. 启动模拟器 `roslaunch tum_ics_ur10_bringup bringUR10-simulator.launch gui:=true` 2. 启动控制器 `roslaunch tum_ics_ur10_controller_tutorial testSimpleEffortCtrl.lau`
  • Hybrid-Position-Force-Control-master_机械臂的_
    优质
    本项目专注于开发机械臂的混合位置/力控策略及阻抗控制技术,旨在优化人机交互中的响应性和稳定性。通过精确调节机械臂对外界力的反应,提升操作精度和安全性。 在机器人技术领域,Hybrid-Position-Force-Control-master是一个关键概念,它涉及机械臂的高级控制策略,特别是阻抗控制。阻抗控制是一种使机械臂能够在位置控制和力控之间灵活切换的方法,这对于执行精确且力敏感的任务(如打磨、装配或接触检测等)至关重要。 阻抗控制的核心思想是让机械臂模拟一个具有特定力学特性的虚拟环境,这个环境可以是一个刚体、弹簧或者阻尼器。通过这种方式,在与外部环境交互时,机械臂能够保持恒定的力或力矩,并且还能按照预定的位置轨迹运动。这种控制策略的灵活性在于它允许我们设定机械臂对外部扰动的响应:当遇到阻力时,机械臂可以像一个有弹性的物体那样进行微小位移,而不是硬碰撞。 在描述中提到用于打磨任务中的阻抗控制表明,在需要保持恒定接触力并根据工件形状调整运动轨迹的情况下,这种技术非常有用。在这种情况下,阻抗控制能够确保稳定的打磨力度,防止过切或不足,并提高打磨质量。 2-Linkages-Robotic-Arm-Hybrid-Position-Force-Control-master这一文件名暗示这是一个针对双连杆机械臂的混合位置力控项目。双连杆机械臂是一种常见的机器人结构,在教学和研究中广泛使用,因其简单但又足够复杂以展示多种控制策略。在这个项目中,开发者可能已经实现了一个控制器,使得双连杆机械臂在执行任务时既能按照预设路径运动又能实时调整其力输出来适应与环境的交互。 实际应用中的阻抗控制涉及以下关键技术点: 1. 力传感器:这些是基础设备,用于监测机械臂和外部环境之间的力或力矩。 2. 控制器设计:这包括处理位置和力反馈以实现混合控制。 3. 模型预测控制:为了准确预测并操控机械臂行为,需要建立其动力学模型。 4. 实时性:阻抗控制通常要求快速响应,因此控制系统必须具备实时计算能力。 5. 参数调整:优化虚拟环境参数(如弹性系数和阻尼系数)以适应具体任务和环境。 Hybrid-Position-Force-Control-master项目展示了如何利用阻抗控技术实现机械臂智能打磨操作。通过精确控制位置与力,保证了过程的稳定性和效率。这样的策略对于提升工业机器人在复杂任务中的表现具有重要意义。