Advertisement

[1999-Kin Lu Wong]非平面微带天线的设计与研究...

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该论文深入探讨了非平面微带天线的设计原理和优化方法,分析其在不同频率范围内的性能表现,并提出创新设计方案以满足现代无线通信需求。 这是台湾国立中山大学翁金輅教授的三大经典著作之一。翁金輅教授是IEEE Fellow,在手机天线和微带天线领域享有盛誉,并发表了近500篇SCI论文。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • [1999-Kin Lu Wong]线...
    优质
    该论文深入探讨了非平面微带天线的设计原理和优化方法,分析其在不同频率范围内的性能表现,并提出创新设计方案以满足现代无线通信需求。 这是台湾国立中山大学翁金輅教授的三大经典著作之一。翁金輅教授是IEEE Fellow,在手机天线和微带天线领域享有盛誉,并发表了近500篇SCI论文。
  • Kin-Lu Wong紧凑宽线.rar
    优质
    该资源为Kin-Lu Wong关于设计紧凑型宽带微带天线的研究成果分享,内容涵盖天线的设计原理、优化方法及实验验证等。 Book Name: Compact and Broadband Microstrip Antennas Professor: KIN-LU WONG Language: English Password: 8888
  • 关于宽螺旋线
    优质
    本研究专注于宽带平面螺旋天线设计,探索其在不同频率范围内的性能优化及应用潜力,致力于提高通信系统的效率和可靠性。 宽带平面螺旋天线的研究与设计 宽带平面螺旋天线因其具备的宽频带特性和圆极化特性,在射频(RF)及微波领域中被广泛应用。本段落主要探讨了一种宽带平面螺旋天线的设计方法,通过优化辐射元、背腔结构以及输入阻抗匹配等方面来提高其性能,并分析了测试结果。 1. 天线辐射单元设计 在设计过程中,需对天线的辐射元件进行精心选择和配置以确保宽频带特性。具体而言,阿基米德螺旋天线由圆形板与螺旋形结构组成。为了满足宽带需求,本段落选择了εr=4.6且厚度为1 mm的板材作为基础材料,并使输入阻抗约为Z0=112.6Ω;此外,还需确保外圈周长大于λmax的1.25倍以及馈电点间距小于λmin/4。 2. 背腔设计 为了实现单向辐射效果,在背腔内通常会放置吸波材料。然而考虑到增益因素的影响,本段落并未填充此类物质而是采用了长度为λ/4的金属套筒作为反射体;该结构如图所示:在同轴电缆外部加上一个同样长度(即λ/4)但不与之接触且仅在其底端短接于外皮上的金属管,并以此构成一个新的特性阻抗Zc的新同轴线L,而终端则处于短路状态。 3. 输入阻抗匹配设计 基于阿基米德螺旋天线的辐射原理,在实现等幅反相馈电(即平衡模式)时通常需要使用巴伦转换器将不平衡型同轴电缆转变为微带线路形式。尽管锥形巴伦能够提供较宽的工作频段,但其加工难度较大且容易导致射频泄露问题;因此本段落采用了空心的同轴变换结构来替代传统的巴伦设计,虽然这会导致馈电不均衡的问题出现,但是方便了实际制造过程中的操作。 4. 测试结果 为了验证圆极化性能,在测试中需要对天线进行不同角度(例如:45°)旋转以获取完整的数据集;当螺旋型发射器处于水平状态而接收端垂直放置时所测得的方向图如图所示。此外,还测量了在相同条件下该装置的增益曲线,并绘制出了轴比特性图表。 综上所述,本段落提出了一种新型宽带平面螺旋天线设计方案并通过仿真与实验验证了其优良的工作性能;这表明它适用于RF和微波技术领域内的多种应用场景中。
  • 关于超宽定向线论文.pdf
    优质
    本文档探讨了平面超宽带定向天线的设计与优化,分析了其在不同频率范围内的性能,并提出了一种新型结构以改善辐射效率和带宽。 本段落研究了一种用于电磁参数测量系统的平面超宽带定向天线。该设计采用锥形渐变微带线馈电的平面单极子天线结构,尺寸为90mm×90mm×1mm。
  • 关于Ku波段宽线 (2012年)
    优质
    本论文专注于Ku波段宽带微带天线的设计与优化,探讨了其在卫星通信中的应用潜力,提出了一种新颖高效的天线结构设计。 本段落提出了一种新型Ku波段宽频带微带天线的设计方法。该设计通过在接地板上开设H型缝隙进行耦合馈电,并在辐射贴片表面添加矩形缝隙以扩展工作带宽,同时还在天线底部增设反射板来提高增益并优化方向图的前后比性能。利用高频仿真软件HFSS对该设计方案进行了模拟和优化,结果显示该结构天线具有良好的宽带谐振特性:回波损耗低于-10 dB,阻抗相对带宽达到39.8%,交叉极化电平小于-28 dB,并且前后比超过19 dB。
  • 线RCS减缩量提升.pdf
    优质
    本文档探讨了针对微带天线雷达截面(RCS)减少的设计改进方法,旨在提高隐身技术的应用效果。通过理论分析与实验验证,提出了一系列有效的RCS缩减策略和技术实现方案。 微带天线RCS减缩方法的详细研究分析表明,在飞行器隐身性能的研究领域,它已成为当前天线技术的一个重要方向。由于低剖面、轻重量及小巧体积等特性,微带天线在实际应用中非常普遍。现代战争很大程度上依赖于信息化战斗能力的竞争,而雷达散射截面积(RCS)作为衡量天线隐身性能的关键指标之一,反映了目标物体对电磁波反射的能力大小。由于天线是发射和接收电磁波的主要设备,在军事领域降低其RCS可以有效减少被探测的风险,因此研究微带天线的RCS减缩具有重要的现实意义。 为了获得更好的隐身效果,现代隐形飞机通常采用改变外形或涂覆吸波材料等方法来降低目标雷达散射截面。本段落基于微带天线的基本理论设计了一款工作频率为2.46 GHz 的贴片式微带天线,并根据不同入射角度的电磁波对RCS减缩的效果进行了对比研究,提出了一系列有效的RCS减缩技术。 这些技术包括使用短路探针加载、小型化处理以及接地板开槽等方法,在保证良好工作频段和增益性能的前提下实现了雷达散射截面的有效降低。在此基础上进一步引入AMC棋盘式结构设计以提高整体的隐身效果,验证了上述各种减缩RCS技术方案的实际可行性与有效性。
  • 基于HFSS四元阵列线
    优质
    本研究利用HFSS仿真软件设计了一种高性能四元平面微带阵列天线,旨在优化其电气性能和制造工艺。 基于微带阵列天线的空腔模型分析法完成了LS波段4元线极化微带阵列天线的设计。使用HISS仿真软件构建了物理模型,并利用HFSS宏定义优化了尺寸参数。通过数据处理得到了驻波比、反射系数、增益方向图和电场方向图等曲线。仿真结果显示,该4元微带阵列天线的各项性能良好,满足工程需求。
  • 新型UWB单极子线
    优质
    本研究提出了一种创新性的超宽带(UWB)平面单极子微带天线阵设计方案,旨在提高无线通信系统的性能。通过优化结构参数,该天线阵展现出卓越的宽带特性、高增益及良好的方向图稳定性,适用于多输入多输出(MIMO)系统和大规模天线阵列技术。 本段落提出了一种新型平面单极子微带天线阵列,以矩形平面单极子天线为基础,通过改变辐射贴片的形状来优化原有天线性能。设计出一款中心频率为2.4GHz、相对带宽达到42%且增益达13dB的宽带四单元平面单极天线阵列。仿真与实验结果表明,在1.93GHz至2.93GHz频段内,该天线反射系数均小于-10dB。
  • 八木线论文
    优质
    本论文深入探讨了八木微带天线的设计、优化及应用,结合理论分析与实验验证,为无线通信技术提供了新的解决方案和思路。 八木微带天线是一种高增益的平面微带天线设计,它利用有限元数值计算方法中的电磁场仿真软件进行优化设计以提升性能。 在了解这种天线的设计与仿真的过程之前,需要先掌握一些基本概念。天线的作用是将高频电信号转换为电磁波或反之亦然,在无线通信系统中至关重要。其中增益是一个关键参数,表示了天线在特定方向上辐射或接收电磁波的能力,并通常以分贝(dBi)来衡量。高增益的天线能够更有效地进行远距离通讯。 有限元方法是一种广泛应用于复杂工程问题中的数值分析技术,在电磁场计算中尤为常见。通过使用如HFSS、CST等仿真软件,可以模拟在特定空间结构下的电磁场分布情况,并帮助设计者评估和优化天线的设计。 八木天线由一系列偶极子及反射器组成,具有简单构造与高增益的特点,广泛应用于电视信号接收等领域;而微带天线则是一种印制于介质基板上的平面化设计,其优点在于体积小、重量轻且易于集成。结合这两种特点的八木微带天线能够在保持较低剖面的同时实现较高的增益。 论文中提到的设计方法基于单边微带形式,并采用了简单的共面波导馈电方式以简化馈电网络并减小尺寸;通过引入匹配侧,实现了良好的阻抗匹配性能,从而提高了辐射效率。仿真结果显示,在维持较宽频带的情况下,天线的增益显著提高。 论文还提到一些其他设计和分析工作:例如宽带平面准八木天线阵列的设计、有源天线阵列的研究以及对八木天线阵列增益优化的相关探讨;此外还有关于改进型印刷八木天线馈电形式及小型导电天线阻抗匹配质量因子的讨论。 综上所述,基于经典八木原理并结合现代微带技术优势,并借助电磁仿真软件辅助进行设计与优化,可以实现高增益和低剖面的目标。这种设计理念在通信、雷达等无线技术领域具有重要的应用价值。
  • 线
    优质
    《微带天线的设计》一文深入探讨了微带天线的基本原理、设计方法及优化技术,旨在为无线通信系统提供高效解决方案。 ### 微带天线设计与ADS软件应用 #### 一、设计原理 微带天线是一种广泛应用在无线通信系统中的天线类型,它由介质基片、导电贴片以及地板构成。根据不同的应用场景和需求,微带天线通常分为矩形微带天线和圆形微带天线两种类型。 - **矩形微带天线**:结构简单,易于设计,适用于需要宽波束的应用场景。 - **圆形微带天线**:相较于矩形微带天线,其波瓣宽度更窄,但方向性系数相近,适用于需要窄波束的应用场景。 #### 二、微带天线设计过程 ##### 1. 设置背景参数 在设计微带天线时,首先需要设定一些基本的背景参数,例如介质材料的介电常数和厚度。本例中选择的介质基片的介电常数为2.32,厚度为0.159mm。 - **设置Layout Unit**:根据设计需求调整单位以确保尺寸精确无误。 - **设置Substrate**:使用MomentumSubstrateCreateModify命令定义介质参数。 - **设置Metallization Layers**:选择金属层并设定其电导率和厚度,铜的电导率为5.78E+06 Sm,厚度为0.018mm。 ##### 2. 天线设计图 接下来进行具体的天线结构设计: - **选取圆半径**:根据应用需要选择合适的圆半径,在此例中取值为25mm。 - **馈电设计**:在圆形贴片左端加入一条微带线,长度和宽度分别为10mm和4.8mm。这是一条具有50欧姆特征阻抗的微带线。 - **馈入点**:将矩形贴片中心位置设为馈入点。 ##### 3. 仿真验证 使用S参数进行初步仿真以验证天线的基本性能: - **电路反射系数**(S11)反映了天线与传输线之间的匹配情况,初始值为0.94942.564。 - **输入阻抗**:初始值是10+j127.7ohm。 - **辐射方向图**:使用Momentum中的Post-ProcessingRadiation Pattern进行仿真。结果表明最大增益为3.016dB,最大方向性系数为5.211dB,效率为58.383%。 ##### 4. 阻抗匹配 为了提高天线的效率和性能,需要对阻抗进行匹配: - **初次匹配**:将天线输入阻抗等效成纯电阻与电感串联,并连接一段长度为4.82mm的传输线。这样可以使阻抗沿τ圆旋转直到变为纯电阻。 - **二次匹配**:使用λ/4传输线实现纯阻抗匹配,计算得到λ/4传输线的宽度为1mm(初始值过大)。 - **三次匹配**:继续进行调整直至达到良好的匹配状态。最终结果是S11参数和输入阻抗显著改善,增益提升至5.016dB,方向性系数提高到5.727dB,效率增加到了79.345%。 ##### 5. 带宽计算 利用公式(BW = 5.04 times f^2 times h)(MHz)进行带宽估算。其中f是以GHz为单位的工作频率,h是毫米为单位的介质厚度。据此天线的带宽大约为32.05MHz,相对带宽约为1.6%。 #### 三、总结 通过上述步骤,我们完成了圆形微带天线的设计与仿真,并进行了阻抗匹配优化以提高其性能指标。在整个过程中,ADS软件的强大功能使设计更加高效和准确。特别是灵活的调整能力展示了ADS相对于其他软件的优势。对于初学者来说,这是一个很好的入门级教程,能够帮助快速掌握微带天线的设计方法及关键技巧。