Advertisement

基于逆PI模型的PI迟滞模型非线性补偿Simulink仿真资源包RAR版

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一种新颖的非线性补偿方法,利用逆PI模型和PI迟滞模型相结合,在Simulink环境中进行详细仿真。包含所有必要的文件以帮助用户理解和实施该技术。适合从事控制理论研究的专业人士使用。 PI迟滞模型、逆PI模型以及Prandtl–Ishlinskii模型是描述压电驱动器迟滞性能的常用方法。基于逆PI迟滞模型可以实现对压电驱动器中迟滞非线性的补偿,从而提高系统的性能和精度。在Simulink环境中进行相关建模与仿真研究时,这些模型的应用能够有效地解决由迟滞效应引起的控制问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PIPI线Simulink仿RAR
    优质
    本资源提供了一种新颖的非线性补偿方法,利用逆PI模型和PI迟滞模型相结合,在Simulink环境中进行详细仿真。包含所有必要的文件以帮助用户理解和实施该技术。适合从事控制理论研究的专业人士使用。 PI迟滞模型、逆PI模型以及Prandtl–Ishlinskii模型是描述压电驱动器迟滞性能的常用方法。基于逆PI迟滞模型可以实现对压电驱动器中迟滞非线性的补偿,从而提高系统的性能和精度。在Simulink环境中进行相关建模与仿真研究时,这些模型的应用能够有效地解决由迟滞效应引起的控制问题。
  • 改良PI压电陶瓷控制.pdf
    优质
    本文提出了一种基于改进型PI控制器的算法,旨在有效补偿和修正压电陶瓷材料在驱动过程中的迟滞性能问题,提高系统响应精度。 压电陶瓷执行器的迟滞特性会降低星间激光通信精瞄系统的定位精度,并对信标光捕获以及链路稳定性产生负面影响。为解决这一问题,通过分析压电陶瓷执行器迟滞特性的生成机理,提出了一种基于PLAY迟滞算子改进的Prandtl-Ishlinskii(PI)数学模型及其辨识方法。利用该模型对压电陶瓷执行器的迟滞特性进行前馈线性化逆补偿,并通过实验验证了数学模型和线性化的有效性。 在不同频率下输入等幅和减幅正弦控制信号,用以评估前馈逆补偿性能时,改进后的PI模型的最大拟合误差均保持在1%以内。采用该方法后,压电陶瓷驱动的线性度误差从5%减少到1%以下,并且改进的PI模型将计算复杂度由O(n)简化为O(1),提高了系统的效率和精度。
  • PI控制PMSM Simulink仿.zip
    优质
    本资源提供了一种基于比例积分(PI)控制器的永磁同步电机(PMSM)在Simulink环境下的仿真模型。该模型详细展示了如何通过调整PI参数来优化电机的动态性能,适用于电机控制系统的教学与研究。 永磁同步电机(PMSM)是一种高效的电动机类型,在工业、汽车及航空航天等领域广泛应用。其工作原理基于电磁感应,通过内置的永磁体产生旋转磁场,并与定子绕组中的电流相互作用实现转动。 本段落档提供了一个使用MATLAB Simulink环境对PMSM进行PI控制仿真的模型。“PMSM采用PI控制simulink仿真”这一压缩包文件展示了Simulink工具的强大功能,用于建立动态系统的可视化模型并支持多种控制理论的实现和仿真。PI控制器作为反馈控制系统的核心策略之一,在提高系统稳定性及优化电机性能方面发挥重要作用。 在对PMSM进行PI控制时,比例(P)项负责快速响应偏差,积分(I)项则用于消除稳态误差;通过调整这两个参数可以进一步优化速度与位置控制效果。Simulink环境支持构建包含电机、传感器和控制器模型在内的完整仿真系统: 1. **电机模型**:电气部分考虑电压方程及电磁转矩计算,机械方面描述了运动方程式。 2. **传感器模型**:通常使用霍尔效应传感器或编码器来获取速度与位置信息,并将其作为PI控制器的输入信号。 3. **PI控制器模型**:在Simulink中通过设置比例增益和积分增益实现这一控制策略,前者决定对偏差的即时反应程度,后者影响误差累积效果。 4. **系统接口**:定义了输入(如电压指令)与输出(电机速度、位置等),并支持外部通信。 仿真研究有助于分析不同参数设定下PMSM的表现特性,包括调速响应能力、稳态精度及抗干扰性能,并进行稳定性评估以确保实际应用中的稳定运行。通过此项目可以深入理解现代电力驱动系统的建模与控制策略,具有重要的实践意义。
  • JAM与SILULINK实现.zip_farmery1b_ja_线_SIMULINK和M_
    优质
    本资源包含使用MATLAB/Simulink实现JA模型的方法,专注于非线性迟滞性建模。适用于研究与仿真迟滞现象的工程师和学者。 JA模型的Simulink实现适用于学习迟滞非线性建模的同学。
  • PI控制并网变器Simulink(R2019b)
    优质
    本研究构建了基于比例积分(PI)控制器的并网逆变器Simulink仿真模型(R2019b版),优化了电网接入性能,确保稳定的电能质量。 1. PI控制 2. SVPWM生成开关信号
  • Play算子PIMatlab代码
    优质
    本代码实现了一种用于模拟PI磁滞效应的数学模型,并采用Play算子进行描述。通过Matlab编程语言,用户可以便捷地分析与可视化不同条件下的磁滞回线。 辗转查找都未能找到相关内容,因此分享给大家,希望能帮助到各位。
  • ADRC_与迭代控制在线和ADRC跟踪中应用_线ADRC_
    优质
    本文探讨了迟滞模型及迭代控制技术在处理具有复杂迟滞性质的非线性系统中的作用,并详细研究了自适应递归 cancellation (ADRC) 在此类系统中的跟踪性能优化,为相关领域的工程应用提供了理论基础与实践指导。 在自动控制领域,ADRC(自抗扰控制)是一种先进的控制策略,具备优良的鲁棒性和适应性,并特别适用于处理包含不确定性和非线性的复杂系统。“迟滞模型”、“迟滞非线性”、“迭代控制”,“ADRC跟踪”和“非线性ADRC”是本主题的核心概念: 1. **迟滞模型**:许多工程系统中存在输入与输出关系依赖于历史路径的特性,即迟滞性。这增加了控制系统设计难度,并使系统的动态行为变得复杂化且难以建模。迟滞现象可分为单边和双边两种类型。 2. **迟滞非线性**:处理这类问题时需要采用特定策略以防止性能下降,例如使用ADRC等方法来克服其影响。 3. **迭代控制**:通过反复执行任务并学习每次结果逐步优化的反馈控制系统。在周期性或重复过程中特别有效,能够减少误差和提高精度。 4. **ADRC跟踪**:ADRC的核心是扩展状态观测器(ESO),它可以实时估计系统状态及扰动以实现精确动态追踪,在迟滞非线性环境中通过调整输入来抵消影响并确保设定值的准确跟随。 5. **非线性ADRC**:虽然传统方法主要针对线性系统,但其理论已扩展至处理包括具有迟滞性在内的复杂情况。该技术结合适当的补偿策略如模型逆或滑模控制以克服非线效应。 “ADRC_with_model_inverse_typeILC.m”和“ADRC_with_DtypeILC.m”的文件可能包含实现ADRC与模型逆及D型迭代学习控制的MATLAB代码,前者用于补偿系统特性后者通过更新输入来改善性能。设计一个结合这两种方法的控制器能够有效应对迟滞非线性系统的挑战,并提高稳定性和追踪精度。 这种方法的成功实施和效果分析通常需要对系统深入理解、合理选择参数以及不断优化实际运行数据。
  • Simulink三相电压变器PI闭环控制
    优质
    本研究构建了基于Simulink平台的三相电压源逆变器PI闭环控制系统模型,旨在优化逆变器性能及稳定性。通过精确调制与反馈控制策略,实现高效电力转换。 三相电压源逆变电路的Simulink模型采用PI闭环控制,波形表现良好。
  • PWM PI控制DC-DC变换器Simulink仿-Matlab开关电.rar
    优质
    本资源提供了一个基于脉宽调制(PWM)比例积分(PI)控制策略的DC-DC变换器在MATLAB Simulink环境下的仿真模型,适用于研究与教学用途。文件内含详细设计和开关电源应用示例。 本段落档包含使用PWM PI控制的DC-DC变换器配置仿真模型的相关内容,并提供了在Matlab Simulink中的开关电源实现方法。文档格式为RAR压缩包。
  • SVG.zip_SVG仿_SVG仿_无功仿
    优质
    本资源包含SVG(静止同步补偿器)的仿真模型及无功补偿相关模拟数据,适用于电力系统研究与教学。 SVG模型仿真;静止无功发生器模型仿真;