Advertisement

Verilog语言下的UART协议实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目详细介绍在Verilog硬件描述语言中如何设计和实现标准的UART通信协议。通过具体实例讲解数据传输、波特率计算及收发控制逻辑等关键技术点。 采用Verilog实现的UART协议已经通过仿真测试,并能够在FPGA上成功运行。非常好!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • VerilogUART
    优质
    本项目详细介绍在Verilog硬件描述语言中如何设计和实现标准的UART通信协议。通过具体实例讲解数据传输、波特率计算及收发控制逻辑等关键技术点。 采用Verilog实现的UART协议已经通过仿真测试,并能够在FPGA上成功运行。非常好!
  • 基于VHDLUART通信
    优质
    本项目采用VHDL语言设计并实现了通用异步收发传输器(UART)通信协议,适用于FPGA平台上的高速数据传输。 这段文字描述了一个用VHDL语言编写的UART程序,并且已经在FPGA板子上验证通过,实现了UART通信功能。
  • VerilogAXI-LITE
    优质
    本项目采用Verilog硬件描述语言,旨在设计并验证AXI-Lite总线协议接口模块。通过代码优化和仿真测试,确保高效的数据传输与控制功能。 使用Verilog代码实现AXI-LITE协议,包括主模块(master)和从模块(slave)。设计测试平台以验证主模块与从模块之间的读写控制功能,并确保仿真成功。 主机部分的代码位于axi_lite_master文件中,可以根据需要修改该文件来增加对特定寄存器的操作。 从机部分的代码在axi_lite_slave文件中编写,可以自定义添加对应的寄存器以及输出端口以实现后端模块寄存器配置。
  • JavaSTUN:stun4j
    优质
    stun4j是一款基于Java开发的库,用于实现STUN(Session Traversal Utilities for NAT)协议。它帮助开发者解决NAT网络环境中的通信问题,支持TURN服务器集成以增强媒体流传输能力。 Stun4j 是一种用于 Java 程序实现 NAT 穿越的方案,它是对 STUN 协议(RFC3489)的Java 实现。
  • 基于FPGAVerilogSPI通信
    优质
    本项目探讨了利用Verilog硬件描述语言在FPGA平台上实现SPI通信协议的方法和技术。通过详细设计和验证,展示了高效的硬件接口通讯解决方案。 该资源的SPI_salver部分主要参考了博客内容,并进行了部分调整。SPI_master部分完全由我自己编写,并且我还添加了一个testbench文件,在Vivado平台上完成了仿真并通过了K7硬件验证。建议在下载前先阅读我的相关博客文章。
  • Java电信SMGP
    优质
    本项目专注于在Java环境下实现电信行业的SMGP(Short Message Gateway Protocol)协议,旨在促进短信服务的高效传输与管理。 电信SMGP协议实现的Java版本可以直接运行,并包含示例代码。
  • VerilogUART代码
    优质
    这段内容提供了一个使用Verilog编写的UART(通用异步收发传输器)硬件描述代码示例。该代码适用于数字系统设计中串行通信模块的实现与仿真。 UART(通用异步接收发送器)是一种广泛应用于嵌入式系统中的串行通信接口,在FPGA设计中起着至关重要的作用,它使FPGA能够与外部设备如微处理器、PC或其他FPGA进行数据交换。 本段落将深入探讨UART的基础知识,并介绍如何在Verilog语言中实现基于FPGA的UART模块。首先我们来了解一下UART的工作原理:作为一种异步通信协议,UART不需要时钟同步信号,而是依赖起始位和停止位确定数据传输边界。通常情况下,每个字符的数据帧包括一个低电平开始位、8个数据位(虽然也可以配置为5到9比特),可选的奇偶校验位以及结束于高电平的一个或多个停止位。 在Verilog中实现UART模块时需要构建发送器和接收器两部分。其中,发送器负责将并行数据转换成串行格式并通过UART接口输出;而接收器则从外部设备读取串行输入,并将其还原为并行形式的数据供后续处理使用。 1. 发送端(Transmitter):在准备进行传输时,发送器会首先把待发的8位或更多比特数据装载到移位寄存器中。然后根据设定好的波特率值控制输出信号的时间间隔,从而将这些信息逐个比特地传送到接收方。 2. 接收端(Receiver):该部分的任务是识别起始位并读取后续的数据帧内容直至检测到结束条件为止,并且在此过程中还要考虑可能存在的奇偶校验错误和其他异常情况的处理逻辑设计。 3. 波特率发生器:这是发送和接收两端都必须依赖的关键组件,它通过计数系统时钟信号来生成精确的时间基准,确保数据传输的速度符合预期标准。通常情况下可以通过配置不同的分频因子来自适应于各种波特率需求。 4. 模块接口定义:一个完整的UART模块应当提供包括但不限于输入输出端口、控制信号以及状态指示在内的多种功能接口以供外部使用与管理。 在某些设计案例中,如uartverilog_nonfifo文件可能描述了一个不包含FIFO缓存机制的简单实现方案。尽管这种简化模型有助于理解基本原理,但在实际应用环境中可能会因为缺乏缓冲而面临性能瓶颈或数据丢失等问题。然而对于学习和研究目的来说,它仍然具有很高的参考价值。 总而言之,在基于FPGA平台开发UART模块时需要掌握数字逻辑设计、定时控制以及错误检测等多个方面的知识技能,并且熟悉Verilog语言与硬件架构的基本特性是必不可少的先决条件之一。通过仔细分析并理解像uartverilog_nonfifo这样的示例代码,可以进一步提升我们对于此类通信接口的理解深度和技术水平。
  • VerilogAES
    优质
    本项目采用Verilog硬件描述语言实现了AES(高级加密标准)算法,适用于FPGA等硬件平台上的数据加密与解密应用。 AES密码算法的Verilog描述及testbench实现:AES加密算法是目前广泛使用的高级加密标准之一。虽然代码质量有待提升,但仍可供大家参考并提出意见。
  • MQTT解析及C
    优质
    本篇为《MQTT协议解析及C语言实现》系列文章的最终部分,详细探讨了MQTT协议的实际应用,并通过代码示例展示了如何用C语言实现该协议的核心功能。 MQTT协议分析与C语言实现(下) 一、MQTT报文分析 1.1 CONNECT - 连接服务端 客户端与服务端的网络连接建立后(完成三次握手),客户端发送给服务端的第一个报文必须是CONNECT报文。
  • C中GoBackN
    优质
    本项目旨在通过C语言编程实现Go-Back-N滑动窗口协议。此协议是一种用于数据链路层可靠数据传输的方法,能够有效避免数据包丢失和重复发送的问题。项目包括接收方与发送方程序设计、序列号生成及超时重传策略等核心功能的开发。 模仿数据链路层的gobackn协议 该协议是搭载ACK的回退N步协议。 ```c #include #include protocol.h #define max_seq 7 #define flag 126 #define ESC 100 #define wait_time 2700 //发送计时器等待的时间 #define ack_wait_time 280 static int phl_ready = 0; void send_ack() { for (int i = 0; i < 7; ++i) { if(ack[i]==ESC || ack[i]==flag) send_byte(ESC); send_byte(ack[i]); } } void handle_data_incoming(int arg) { int in_len = 0; for (int i = 0; i < arg; ++i, ++in_len) { //挨个字节处理 char byte_received = recv_byte(); if(in_len > 0 && end_flag(in_len)==0 && byte_received == flag) { int m=0, j=0; for(;m