Advertisement

一种新颖的过流保护电路设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本作品提出了一种创新的过流保护电路设计方案,旨在提高电子设备的安全性和可靠性。通过优化电路结构和采用新型元件,有效防止电流过大导致的损害,具有广阔的应用前景。 摘要:不同于多数采用“中断”模式实现保护的方法,本段落提出了一种针对低压差线性稳压器(LDO)的过流保护电路设计新方案。该方案通过引入“屏蔽电路”,在检测到过流信号时暂时屏蔽这些干扰信号,确保LDO不会因过流而停止运行。同时,在屏蔽期间为了防止过大电流导致功率管烧毁的风险,特别增设了过大电流关断电路,能够在负载电流异常增大可能瞬间损坏功率管的情况下及时切断电源供应,保障器件的安全性。此外,该方案还允许用户根据具体需求设定不同的屏蔽时间间隔。 通过采用CSMC 0.5 μm BiCMOS工艺,并利用Cadence spectre软件进行仿真验证后发现:改进后的过流保护电路能够有效地在预定时间内隔绝过流信号的影响;同时扩大了LDO正常工作条件下的参数范围,从而确保其更加高效且安全地运行。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本作品提出了一种创新的过流保护电路设计方案,旨在提高电子设备的安全性和可靠性。通过优化电路结构和采用新型元件,有效防止电流过大导致的损害,具有广阔的应用前景。 摘要:不同于多数采用“中断”模式实现保护的方法,本段落提出了一种针对低压差线性稳压器(LDO)的过流保护电路设计新方案。该方案通过引入“屏蔽电路”,在检测到过流信号时暂时屏蔽这些干扰信号,确保LDO不会因过流而停止运行。同时,在屏蔽期间为了防止过大电流导致功率管烧毁的风险,特别增设了过大电流关断电路,能够在负载电流异常增大可能瞬间损坏功率管的情况下及时切断电源供应,保障器件的安全性。此外,该方案还允许用户根据具体需求设定不同的屏蔽时间间隔。 通过采用CSMC 0.5 μm BiCMOS工艺,并利用Cadence spectre软件进行仿真验证后发现:改进后的过流保护电路能够有效地在预定时间内隔绝过流信号的影响;同时扩大了LDO正常工作条件下的参数范围,从而确保其更加高效且安全地运行。
  • 基于TL494
    优质
    本设计探讨了利用TL494芯片构建高效电路过流保护机制的方法,旨在提高电子设备的安全性和稳定性。通过精确控制电流阈值,有效避免过载风险。 今天我们将通过波形测试结果来探讨TL494在德州仪器电源中的特点及其过流保护的实现机制。
  • 基于截止型
    优质
    本项目致力于开发一种新型过流保护电路,采用截止机制以提升电子设备的安全性能,有效防止电流过大导致的损害。 本段落介绍了几种过流保护电路,并对其进行了比较分析。其中重点介绍了一种利用取样电阻、电压比较器及MOS管设计的截止型过流保护电路的工作原理。
  • vs
    优质
    本文探讨了电气系统中短路保护与过流保护的区别和应用,帮助读者理解如何选择合适的保护措施以确保安全。 过流保护(OCP)和短路保护(SCP)经常被混淆或互换使用,但实际上两者之间存在差异。在本段落中,我们将探讨这两者的不同之处。
  • 优质
    短路保护电路是一种用于防止电气设备因电流过大而受损的安全装置。当检测到异常电流时,该电路能够迅速切断电源,确保系统安全运行。 我设计了一个简单的短路保护电路,如果有兴趣的话可以下载看看是否对你有帮助。
  • 带隙基准压源
    优质
    本文介绍了一种新颖的设计方法,用于构建高效的带隙基准电压源。该设计优化了传统方案中的不足,实现了更高的精度和稳定性,在集成电路中具有广泛应用前景。 基于TSMC 0.5μm CMOS工艺设计了一款带隙基准源电路。与传统电压基准相比,该电路采用高增益的运算放大器进行内部负反馈,并通过嵌套式密勒补偿技术实现了低温漂、高电源抑制和低功耗的特点。仿真结果显示,该电路产生的基准电压精度为13.2×10^-6/℃,在低频时的电源抑制达到-98dB,静态工作电流仅为3μA。
  • 方法
    优质
    本文介绍了在直流电路中采用的各种过流保护方法,包括熔断器、断路器和电子保护装置等技术手段及其工作原理。 在直流电路设计中,过流保护是非常关键的环节,它能够确保电路安全并防止设备损坏。传统的保护方式,如使用普通熔丝,在电流过大时可以断开电路,但其反应速度较慢,并不能及时应对突发的大电流情况,因此不适合作为高灵敏度的保护装置。针对这一问题,电子保护电路应运而生,它具备高速断流和快速恢复的能力,成为直流电路过流保护的理想选择。 电子保护电路通常包括微动开关、单向晶闸管、检测电阻以及晶体管等元件。在正常工作状态下,微动开关K闭合,使得单向晶闸管SCR导通,进而使直流电路接通。一旦电流超过设定的允许值,检测电阻R1上的电压将升高;当该电压达到0.7V时,会触发晶体管BG导通。此时,晶体管BG的集电极与基极之间的电压下降至低于维持电压水平,导致单向晶闸管SCR关断并切断供电电路,从而实现对过电流的快速响应和保护。 元件的选择对于电子保护电路性能至关重要。例如,在电源两端电压不超过100V的情况下,可以选用3DD15C型号晶体管BG;而6A400V规格单向晶闸管SCR则适用于不同的电流与电压需求环境。检测电阻R1的阻值需根据允许的最大电流设定,计算公式为:R1 = 0.7I(其中I代表电源最大允许电流)。以5W电路为例,通过计算得出R2的阻值应约为0.35Ω,并且该线绕电阻能够承受高达2A的电流。 除了元件选择外,在设计过程中还需考虑保护阈值设定、动作时间以及恢复策略等因素。保护阈值需在有效避免过流的同时减少误触发次数;同时,必须确保电路异常时能迅速切断电源以缩短响应时间;最后,故障排除后系统应能够安全重启并恢复正常运行。 综上所述,直流电路的过流保护方法涉及了电路原理、电子元件特性及设计等多个方面。采用电子保护技术不仅能提高灵敏度和效率,还能降低因电流过大导致设备损坏的风险,从而保障整个系统的稳定性和可靠性。
  • 基于论文开关
    优质
    本论文介绍了一种针对开关电源的过流保护电路设计方案,通过详细分析和实验验证,提出了一种有效的电流限制与保护机制,确保了电源系统的稳定性和安全性。 开关电源过流保护电路设计涉及确保在电流超出安全范围时能够及时切断电源以防止损坏或安全事故的发生。这种设计对于提高电源系统的可靠性和安全性至关重要。
  • 经典开关
    优质
    本文章主要介绍一种经典且高效的直流开关电源过电压保护电路设计方案,旨在提高电源系统的稳定性和安全性。文中详细探讨了过压检测和响应机制,并提供了实际应用案例及测试数据。 本段落介绍了一种经典的直流电源过压保护电路,在开关电源设计中,过压保护是一个关键环节,并且存在多种实现方式。这里仅提供一种实例进行探讨。