Advertisement

本手册提供天线测量的实用指南。它涵盖了天线测量所需的各种技术和方法。 旨在帮助读者理解并应用这些技术,以进行准确的天线评估和测试。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本书对于从事天线测量工作的人士而言,无疑是一本极具价值的参考资料。它详细阐述了天线的核心理论知识,并系统地介绍了用于评估天线性能的各种实用方法,为相关领域的专业人士提供了重要的支持。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    《天线测量指南手册》是一本全面介绍天线测量技术、方法与应用的专业书籍。适合科研人员和工程师参考使用。 这本书详细讲解了天线测量和RCS测量方法,并进行了全面的误差分析。它是一本非常经典的微波测量手册。
  • 线
    优质
    《天线测量实务指南》是一本全面介绍天线测量技术与实践操作的专业书籍,旨在帮助工程师和研究人员掌握天线性能评估的方法和技术。 对于从事天线测量的工作人员来说,这本书是一本非常有价值的参考资料。书中涵盖了天线的基本知识以及多种用于测量天线性能的方法。
  • 线58页PPT
    优质
    这份58页的PPT提供了一套全面而简洁的学习材料,旨在帮助初学者快速掌握天线技术的基础知识、工作原理及应用。适合通信工程及相关领域的学习者和从业人员参考使用。 58页PPT全面介绍天线技术,涵盖基础知识、设计原理及应用案例等内容。通过这份资料的学习,可以系统地了解天线的工作机制及其在现代通信中的重要作用。希望这份文档能够帮助大家深入理解并掌握相关知识。
  • MIMO线分析
    优质
    本论文深入探讨了多输入多输出(MIMO)天线技术的各项关键分析,涵盖理论建模、性能评估及实际应用等方面。 多入多出(MIMO)系统是指在发射端与接收端同时使用多个天线的通信技术。研究表明,该技术特别适合于城市内复杂无线信号传播环境中的宽带无线通信,在室内环境下频谱效率可以达到20至40 bit/s/Hz;而在传统移动蜂窝网络中,这一数值仅为1到5 bit/s/Hz,固定微波系统也只有10到12 bit/s/Hz。通常情况下,射频信号的多径传播会导致衰落现象,并被视为不利因素。然而研究发现,在MIMO系统中,这种多径效应可以被利用为有利条件。 由于其在提高数据传输速率方面的显著优势,MIMO技术越来越受到人们的重视,并被认为是下一代无线通信技术的重大革新。
  • 线
    优质
    《天线理论和技术》是一本全面介绍电磁波传输、辐射与接收原理及其应用的专业书籍。书中涵盖了从基础理论到先进设计技术的内容,包括各种类型天线的设计方法和优化技巧,并探讨了最新的研究进展和挑战。适合通信工程及相关领域的研究人员和工程师阅读参考。 天线理论与技术是一门研究天线性能的学科,它运用数学物理的方法对天线进行分析求解。该领域涵盖电磁场理论、无线电波传播原理、天线设计以及射频系统匹配等多个方面。 在开展天线的理论研究时,通常需要计算电流分布、输入阻抗和辐射场等关键参数。其中,电流分布直接影响到天线的辐射性能与效率;而输入阻抗则决定了天线与发射机或接收机之间的匹配情况,进而影响信号传输质量。 由多个单元组成的天线阵列可以增强其方向性,通过特定排列及激励方式控制波束的方向来提高信号传输和目标识别精度。在分析此类系统时,需考虑以下因素对辐射模式的影响: 1. 单元的定向特性及其朝向:每个单元都有独特的辐射强度分布规律,它们的布局决定了整个阵列的整体方向性。 2. 间距设置:天线之间的距离会影响其性能特征;例如过大的间隔可能导致波束旁瓣增加或减少覆盖范围。 3. 相位和振幅控制:通过调控各单元间的相位差及电流强度来调整主波束的位置、宽度等属性。 文中还特别讨论了二元振子阵列,包括边射型与端射型两种类型,并解释了如何利用方向图乘积原理以及矢量图辅助分析这类结构的特性。此外,也提到了对称振子镜像原则的应用方法及其在天线设计中的重要性。 综上所述,通过精确控制单元间距、电流相位及幅度等参数可以优化天线阵列的方向性能,在提升信号覆盖范围的同时降低干扰并提高通信质量。这些研究成果对于通讯、雷达探测、导航定位以及广播等领域具有重要的应用价值和技术支持作用。
  • 线动检
    优质
    天线测量手动检测是指通过人工操作的方式对各类天线进行性能参数测试的过程,包括但不限于增益、方向性及驻波比等关键指标的评估。这种方法在研发阶段尤其重要,用于确保天线设计符合预期标准,并为自动化大规模生产提供可靠的数据基础。 本书详细介绍了各种天线参数的测量方法及测量方式。
  • 线微波
    优质
    本文章详细探讨了天线在微波技术领域的各种应用,包括通信、雷达和传感系统等,旨在为读者提供全面的知识框架和技术洞察。 在信息技术领域特别是微波技术中,天线扮演着至关重要的角色。作为无线电设备的关键组件之一,它负责发射与接收电磁波以确保信号的有效传输。随着科技的进步,智能天线作为一种先进的技术,在多个方面展现出显著优势:例如增强信号传输效率、抑制干扰和提升系统容量等。 智能天线的基本原理是通过定向发送和接收电磁波形成空间方向性波束,并精确对准用户信号的方向;同时将干扰信号进行抑制或消除。它利用各移动用户间信号的空间特征差异,在同一信道上实现多用户的无干扰传输,从而显著提高了频谱利用率与传输效率。 相较于传统天线技术,智能天线在空域处理和时域处理方面表现出色,并且通常由多个天线单元组成,每个单元后面都有一个复数加权器。通过相加器合并输出信号;更复杂的结构则包含时域延迟抽头加权网络以实现双重空间与时域处理。 目前智能天线主要分为两大分支:波束转换技术和自适应空间数字处理技术。前者通过切换不同波束来追踪信号,后者根据环境变化实时调整加权系数优化信号处理过程。 在应用方面,智能天线的性能优势体现在多个层面如抗多径衰落、减小时延扩展、支持高数据速率等;并且可以改善误比特率(BER)性能和系统容量的同时提高频谱效率。以TD-SCDMA系统为例,在该环境中使用自适应天线能够通过动态形成定向波束并跟踪用户移动,从而优化业务质量,并有效利用信道资源。 综上所述,智能天线技术在微波通信中发挥着重要作用;特别是在应对日益增长的数据传输需求和优化无线通信网络性能方面提供了创新解决方案。
  • 线》——毛乃宏
    优质
    《天线测量手册》由毛乃宏编著,全面介绍了天线测量技术的基础理论、实践方法及应用案例,是从事电磁波工程领域研究人员和工程师的重要参考书。 天线测量手册---毛乃宏,天线测量手册---毛乃宏,天线测量手册---毛乃宏
  • 微波线
    优质
    本课程涵盖微波技术与天线设计的基础理论及应用实践,包括电磁波传播、微波组件特性以及各类天线系统的设计原理。 微波技术与天线是通信工程中的重要领域,涵盖了无线传输、雷达系统、卫星通信等多个方面的内容。微波是指频率在300MHz(约1米波长)至300GHz(约1毫米波长)之间的电磁波,这个频段的电磁波具有能量高、传播特性好和易于调制等优点,因此被广泛应用于现代通信。 **微波技术** 微波技术主要涉及微波器件、电路以及系统的研发与应用。微波器件包括放大器(如高电子迁移率晶体管HEMT)、混频器、频率合成器、开关及滤波器等,它们是构成复杂微波电路的核心组件。微带电路、同轴线缆和导行系统等则是常见的微波电路类型,在设计这些电路时需要考虑电磁波的传播特性,如趋肤效应、驻波比以及衰减等问题。而实际应用中的雷达设备、卫星通信系统及移动基站等则构成了复杂的微波系统,它们涉及到信号发射与接收技术,并且必须具备良好的抗干扰性能。 **天线理论** 作为微波通讯的关键元件之一,天线负责电磁能量的发送和接受工作。其主要参数包括增益能力、方向性图谱、极化状态以及输入阻抗等特性。其中,增益值反映了设备集中发射功率的能力;方向性图则展示了不同角度下辐射强度的变化情况;而极化方式决定了装置对特定偏振态电磁波的敏感度;最后,天线与馈电线路之间的匹配程度以输入阻抗表示,并直接影响整个系统的效率。 常见的几种类型包括偶极子、抛物面反射器、微带板状、鞭杆形以及阵列式等。例如:短距离通信中常用到简单的偶极子设计;卫星通讯则偏好使用聚焦性能优良的抛物面天线,以实现高增益传输;而体积小巧且易于集成的小型化微波贴片天线,则在无线设备中有广泛应用。 **微波通信** 凭借其高速度、大容量以及低损耗的优势,微波技术成为了现代通讯网络中的重要组成部分。例如:地面数据链路的构建通常采用视距传播方式;雷达系统通过发射与接收信号来实现目标探测和跟踪功能;而地球同步卫星作为中继站,则支持全球范围内的无线通信服务。 **应用领域** 无论是日常生活中的手机通话、互联网接入,还是科研领域的遥感监测及太空探索任务,微波技术与天线都扮演着至关重要的角色。例如:在移动通讯网络建设方面,基站的天线系统负责信号覆盖;WLAN(无线局域网)中WiFi信号通过特定频率范围内的传输实现连接;此外,在航空和航天领域内,雷达设备用于飞行器导航及气象观测任务。 微波技术与天线学科横跨多个专业方向,并且其发展推动了整个通信行业的进步。这些技术和装置不仅极大地便利了我们的日常生活,还在科研探索中发挥了关键作用。
  • 线及电波传播——线向图
    优质
    本篇文章主要介绍如何通过手动方法测量天线的方向图,并探讨其在电波传播中的应用和重要性。适合通信技术爱好者和技术人员参考学习。 ### 天线与电波传播——手动测量天线方向图 #### 一、实验目的 本次实验的主要目的是让学生掌握如何手动测量天线的方向图,并理解天线方向图的基本原理及其重要性。具体包括: 1. 掌握测量接收天线电平大小的方法:通过手动绘制方向图的方式,学习如何测量天线接收电平。 2. 了解天线方向图的基本原理:深入理解天线方向图的概念、意义以及其在实际应用中的作用。 3. 使用功率测量法测试天线方向图:通过功率测量的方法来了解天线的辐射特性,特别是天线的增益、波束宽度等关键指标。 #### 二、实验原理 1. 天线方向图的概念:天线方向图是一种表示天线辐射强度随空间角度变化的图形。它能够直观地展示天线辐射的强弱分布情况。 2. 测量原理: - 全向天线:本实验使用的是全向天线,这种天线在水平方向上表现为无方向性,即360°均匀辐射;而在垂直方向上,则表现为具有一定宽度的波束。 - 功率测量法:通过功率计测量接收天线在不同角度下的功率值,以此来描绘天线的方向图。波瓣宽度越小,天线增益通常越大。 #### 三、实验仪器 - 天线测量实训系统:包含发射机和接收机,用于模拟真实环境中的天线通信。 - 全向天线:用于接收和发射电磁波。 - N型传输电缆:用于连接天线与测量设备。 - 功率计:用于测量接收天线的功率值。 #### 四、实验方法及步骤 1. 准备阶段:将全向天线固定于支架上,并确保满足远场条件。 2. 连接设备:使用N型电缆将待测天线与“RF OUT”端口连接,使电磁波信号能通过天线发射出去。 3. 接收信号:接收天线接收信号,并将信号送至信号输入口。 4. 记录数据:观察并记录接收机上显示的功率值。 5. 角度调整:电动转动天线,记录不同角度下的功率值,直至完成360度旋转。 6. 数据分析:根据记录的数据,使用打点法在坐标纸上描出每个点的位置,进而连接各个点,绘制出天线的主瓣及旁瓣。 #### 五、实验记录及数据处理 实验过程中记录了不同角度下的接收天线功率值。通过对这些数据进行处理,可以绘制出天线的方向图。例如,当天线旋转到10°时,功率值为-43.9 dBm;而当旋转到-10°时,功率值为-41.6 dBm。通过这样的方式,可以清晰地看到天线在不同方向上的辐射特性。 #### 六、误差分析及问题讨论 1. 测量设备的影响:为了提高测量精度,需要确保所使用的测量设备具有足够的动态范围。可以通过提高信号源发射功率、使用低噪声放大器等方式来改善。 2. 电缆的影响:电缆受挤压、接头或转换器之间的不匹配都可能导致测量结果出现误差。 3. 信号源输出功率稳定性:若信号源输出功率不稳定,可能会导致接收信号出现突变。 #### 七、注意事项 1. 避免不必要的干扰:设置好方向后,无需频繁操作发射开关,尤其是选择小功率发射模式时。 2. 人员活动限制:发射过程中应避免人员走动,以减少实验误差。 3. 保持足够距离:天线之间需保持至少1米以上的距离,以确保测量的准确性。 #### 八、心得感悟 本次实验不仅巩固了理论知识,还加深了对天线性质的理解。通过实际操作,对天线的工作原理有了更直观的感受。希望能够在未来的学习和工作中进一步探索天线技术及其在通信领域的应用。