Advertisement

利用PSO算法,针对运动学冗余机械臂的求逆解,开发了Matlab程序(并满足关节限位约束)。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该Matlab程序运用了粒子群优化(PSO)算法,对一个包含四自由度的运动学冗余机械臂进行运动学逆解的计算,从而能够实现对机械臂位置的精确控制。同时,得到的最佳关节角度值能够确保所有关节均符合各自的运动限制。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于PSO考虑Matlab实现
    优质
    本研究利用粒子群优化(PSO)算法,在MATLAB环境下实现了考虑关节限位约束的机械臂运动学冗余求解,旨在提高机器人操作灵活性与路径规划精度。 该Matlab程序使用PSO粒子群算法为一个具有四自由度的运动学冗余机械臂求解逆向运动学问题,并能够实现对机械臂的位置控制。此外,所得到的最佳关节角度值符合各个关节的限位约束条件。
  • 基于MATLAB八组
    优质
    本程序利用MATLAB开发,专注于解决机械臂逆运动学问题,提供八种不同的逆解方法,为机器人工程和自动化领域中的精确控制与仿真研究提供了有力工具。 对Puma560机械臂求逆解,理论上每个姿态对应着八组逆解。本程序将该机械臂的八组逆解全部计算出来,并以函数形式调用。
  • 于自适应粒子群问题中研究.pdf
    优质
    本文探讨了自适应粒子群优化算法应用于冗余机械臂逆向运动学问题的有效性和优越性,通过实验验证了该方法能够提高计算效率和准确性。 基于正向运动学方程原理,冗余机械臂逆运动学解问题可以转化为求解一个等效的最小值问题,并提出了一种自适应粒子群算法来解决这一问题。为了保持群体中的个体活力,在该算法中引入了弹射操作机制:当满足特定条件时,粒子会以一定的概率从当前位置发射到更远的空间区域。为配合这种新的策略,设计了一个评估粒子质量的新标准,从而允许粒子能够被有效地弹出可行解的范围之外。通过数值实验验证表明,此方法具有强大的全局搜索能力和较快的问题求解速度,在解决冗余机械臂逆运动学问题上展现出了很高的有效性。
  • 优质
    《机械臂逆运动学解法》一文探讨了利用数学模型和算法求解机械臂关节变量的方法,旨在实现精确控制与路径规划。 机械手臂的逆运动学解是指根据期望的手臂末端位置和姿态来计算关节变量的过程。这一过程对于实现精确控制非常重要,尤其是在自动化装配、机器人手术等领域有着广泛应用。解决逆运动学问题的方法多种多样,包括解析法、数值迭代法等,每种方法都有其适用场景和优缺点。通过有效的逆运动学解算,可以提高机械手臂的灵活性与操作精度,在实际应用中发挥更大的作用。
  • MATLAB素描代码-规划:避障
    优质
    本项目通过MATLAB实现冗余机械臂在复杂环境中的运动规划与避障算法,采用先进的路径优化技术确保机械臂高效、安全地完成任务。 在MATLAB环境中实现素描代码中的碰撞检测原理与算法包括使用包围体(Bounding Volumes, BV)、包围球(Spheres)、轴对齐包围盒(Axis-Aligned Bounding Boxes, AABB)以及有向包围盒(Oriented Bounding Box, OBB)。这些方法基于分离轴理论(Separating Axis Theorem, SAT),即如果两个多边形在所有可能的分隔轴上都没有重叠,则它们不发生碰撞;反之,若两者投影在每一个潜在的分离轴上的位置都存在交集,则判定为发生了碰撞。 具体到三角形间的检测代码实现如下: ```matlab close all; clear; clc % GJK算法适用于所有凸体之间的碰撞检测。该方法只对凸对象有效。 % 具体实现方式见下述MATLAB环境中的GJK算法相关代码实例: close all; clear; clc; % 三维物体的描述可以通过包围体积、像素化或三角网格来完成。 % 使用distmesh工具箱生成一个特定形状(例如克莱因瓶)的表面模型 fd = @(p)(sum(p.^2,2)+.8^2-.2^2).^2-4*.8^2*(p(:,1).^2+p(:,2).^2); [p,t] = distmeshsurface(fd,@huniform,0.1,[-1.1,-1.1,-.25; 1.1, 1.1,.25]); ```
  • 六轴八组MATLAB.rar
    优质
    本资源提供了一个MATLAB程序,用于求解六轴机械臂逆运动学问题中的八组可能解。适用于机器人工程与自动化控制领域的学习和研究。 六轴机械臂逆运动学求八组逆解的MATLAB程序有两种版本,并且已经经过测试确认可用。这两种版本都可以有效地解决六轴机械臂逆运动学的问题并提供准确的结果。
  • 仿人几何.pdf
    优质
    本文探讨了一种针对仿人机械臂设计的新型运动学逆解几何算法,通过创新性的几何方法提高了计算效率和准确性。该方法为复杂环境下的人形机器人提供了更精确的动作控制能力。 7自由度机械臂通过其七个关节的自由度来控制末端执行器的六个位姿变量,并因此拥有冗余自由度。这意味着对于每一个特定的末端位置姿态,存在无限多组可能的关节角度组合,从而显著提升了操作灵活性。这种冗余性不仅使机器人能够实现精确的位置控制,还支持空间避障、避开奇异构型以及避免关节运动范围极限等功能。 由于这些特性,7自由度机械臂在服务机器人和太空探索等领域中得到了广泛应用,特别是在需要高度灵活性的应用场合。然而,尽管提供了更多的操作可能性,冗余自由度也增加了求解逆向运动学问题的复杂性。
  • Matlab代码-规划
    优质
    本项目包含利用MATLAB编写的机械臂逆运动学求解及运动规划代码,适用于机器人领域中机械臂的位置控制与路径规划研究。 这篇博客记录了我对6自由度机械臂的运动规划实现过程。 请注意,关于逆运动学实现的报告尚未完成,一旦完成,我会将其上传。 代码涵盖了正向运动学和逆向运动学的实现,并且机械臂仿真是在Matlab中进行的。
  • C++毕业设计:(遗传).zip
    优质
    本作品为C++编程的毕业设计项目,专注于利用遗传算法解决机械臂的运动学逆问题。通过优化算法实现对机械臂关节角度的有效计算,以达到指定位置和姿态,展示了在机器人领域中的实际应用价值。 C++毕业设计项目:机械臂的运动学逆解求解基于遗传算法,并已获得指导教师的高度认可与通过。 此项目的重点在于利用遗传算法解决机械臂的运动学逆问题,这一创新性方法在实际应用中展现出高效性和精确度,在答辩过程中赢得了评审老师的赞赏和高分评价。
  • 五自由度.docx
    优质
    本文档探讨了五自由度机械臂的正向和逆向运动学问题求解方法,分析其关节角度与末端执行器位置、姿态之间的关系,并提供了相应的计算模型和实例验证。 对市面上常见的5自由度机械臂使用MDH方法进行建模,并给出了简单的正逆运动学解法。