Advertisement

通过伽辽金法求解常微分方程的ODE Solver - MATLAB开发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目使用MATLAB实现基于伽辽金法的ODE求解器,旨在高效准确地解决各类常微分方程问题。 [APPROX, EXAC, ERR] = ODEGALERKIN(POLY, BC, N) 使用特征多项式矩阵“POLY”、边界条件“BC”以及有限数量的近似基函数,通过伽辽金方法求解常微分方程(ODE) “N”。程序输出包括近似解“APPROX”、分析解“EXAC”和百分比误差“ERR”(%)。此外,还会显示近似解与分析解的图表。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ODE Solver - MATLAB
    优质
    本项目使用MATLAB实现基于伽辽金法的ODE求解器,旨在高效准确地解决各类常微分方程问题。 [APPROX, EXAC, ERR] = ODEGALERKIN(POLY, BC, N) 使用特征多项式矩阵“POLY”、边界条件“BC”以及有限数量的近似基函数,通过伽辽金方法求解常微分方程(ODE) “N”。程序输出包括近似解“APPROX”、分析解“EXAC”和百分比误差“ERR”(%)。此外,还会显示近似解与分析解的图表。
  • 优质
    伽辽金法是一种将偏微分方程转换为代数方程组进行数值求解的有效方法,广泛应用于工程和物理学中的结构分析与流体动力学等领域。 该算法采用Fortran语言编写,并使用VS2010与Intel Visual Fortran编译器配合进行开发。Fortran语言专为表达科学及工程问题中的数学公式而设计。需要注意的是,此内容并非本人原创。
  • Adams-Bashforth-Moulton数值matlab
    优质
    本项目采用Adams-Bashforth-Moulton预测校正公式,利用Matlab实现求解常微分方程初值问题的高效算法。 求解一阶常微分方程的数值方法包括单步法和多步法: 1. 欧拉方法; 2. 亨氏法; 3. 四阶 Runge Kutta 方法; 4. Adams-Bashforth 方法; 5. Adams-Moulton 方法。 这些方法通常用于求解初始值问题(IVP),一阶初始值问题被定义为一个一阶微分方程和在 t=t₀ 处指定的初始条件: y = f(t,y) ; t0 ≤ t ≤ b y(t₀) = y₀
  • MATLAB-MATLAB.pdf
    优质
    本PDF文档深入讲解了如何使用MATLAB软件进行常微分方程及其方程组的有效求解,涵盖基础概念、编程技巧及实例应用。适合工程和科学计算领域的学习者和技术人员参考。 Matlab常微分方程和常微分方程组的求解方法涉及使用内置函数如ode45来解决数学问题中的这类方程。通过编写适当的函数文件定义方程,用户可以利用Matlab的强大功能进行数值计算与分析。文档详细介绍了如何设置初始条件、参数以及输出结果的方式,帮助学习者掌握这些工具的应用技巧。
  • Matlab代码-Partial-differential-equation-solver:偏
    优质
    本项目提供了一个基于MATLAB开发的偏微分方程求解工具。用户可以利用该工具高效地解决各类物理和工程问题中的偏微分方程,简化科研与学习过程。 这段MATLAB代码用于可视化存在振动欧拉梁时流体域的压力和速度场。求解器使用有限差分法来求解梁的四阶微分方程。流体是根据分析推导实现,并与结构振动耦合。
  • Maple和MATLAB
    优质
    本书聚焦于使用Maple和MATLAB软件来解析与数值求解各类常微分方程问题,通过实例深入浅出地介绍这两种工具的应用技巧。 该书是一本结合常微分方程基础理论、基本方法与数学软件应用的教材。它保持了现有通用教材中的完整理论体系,并提供了多样化的解题技巧。书中通过问题导向的方式引导读者发现解决问题的方法,进而引出重要的概念、命题和定理,体现了“诱导发现法”的教学理念。本书采用B.Van Rootselaar方法求解常系数齐次线性方程组,并展示了这种方法在计算机实现中的优越性。
  • KL随机_Galerkin展_KL展__随机Galerkin
    优质
    本研究探讨KL随机Galerkin展开技术结合Karhunen-Loève (KL)展开与伽辽金方法,用于解决含不确定性参数的偏微分方程问题。 KL展开随机场的程序可以通过伽辽金法进行计算,并涉及几种类型的相关函数。
  • MATLAB数值
    优质
    本文章介绍了在MATLAB环境下求解常微分方程的各种数值方法,包括欧拉法、龙格-库塔法等,并提供了实例代码。 常微分方程的数值解法包括ode45、ode15i等等。涉及隐函数和边值问题等内容。
  • MATLAB——随机
    优质
    本课程专注于使用MATLAB进行随机微分方程的数值模拟与解析。学习者将掌握如何运用MATLAB工具箱解决复杂的随机动力学问题,并进行深入的数据分析和可视化展示。 在MATLAB开发中求解随机微分方程,并编写用于计算LSDE前两个矩的函数。