Advertisement

使用MATLAB(美式)编写的看涨期权跳跃模型,用于欧美期权定价。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
近期涌现出众多替代模型,旨在补充和扩展经典的Black-Scholes期权定价模型,从而更好地融入实际经验数据。这些新模型通常在Black-Scholes框架内,利用布朗运动以及正态分布来模拟资产的回报过程。然而,实证分析揭示了两个关键观察点:首先,资产收益率的分布特征与正态分布存在显著差异,表现为更高的峰值以及两个更为突出的、不对称且较重的尾部(fat tails);其次,“波动率微笑”这一在期权市场上普遍存在的经验现象也需要加以考虑。为了应对上述挑战,Kou (2002) 等近期模型提出了一种方法,该模型允许标的资产的价格根据布朗增量和双指数跳跃过程进行动态调整。本研究的目标是在该模型的基础上,构建美式期权的精确分析定价公式,从而实现对期权价格的有效评估并确定相应的对冲参数。内容包括Matlab模型代码、2008年论文比较、导数代码等。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Matlab扩散代码-...
    优质
    本资源提供了一套基于MATLAB编写的美式看涨期权跳扩散模型代码,适用于金融工程中欧美期权定价问题的研究与教学。 近年来,人们开发了许多替代模型来扩展Black-Scholes期权定价框架,以便更好地反映实际市场特征。在传统的Black-Scholes模型中,资产回报被假设为遵循布朗运动和正态分布。然而,实证研究揭示了两个关键问题:(i) 资产收益的分布具有比正态分布更高的峰度以及不对称且更重尾部的特点;(ii) 在期权市场中观察到一种称为“波动率微笑”的现象。 为了应对这些问题,一些模型被提出作为解决方案,其中包括Kou(2002)提出的跳跃扩散模型。该模型假定标的资产的价格可以根据布朗运动和双指数分布的跳变而变动。本论文旨在基于此框架开发美式期权的解析定价公式,并以此来有效确定其价格以及相关的对冲参数。 此外,本段落还包含了一个Matlab代码实现,用于模拟Kou跳跃扩散模型中的美国期权定价问题。通过该代码可以更好地理解及验证理论分析结果的有效性与实用性。
  • MATLAB lsqnonlin代码-指数...
    优质
    本段代码利用MATLAB中的lsqnonlin函数优化参数,基于指数模型为欧洲式看涨期权定价。适用于金融建模与分析。 我们研究了无限活动(IA)指数Lévy模型类别中的两个模型——方差-伽玛(VG)模型和CGMY模型,旨在分析它们的简单性如何与更复杂的Heston随机波动率(SV)及Bates随机波动率跳跃扩散(SVJ) 模型竞争。我们提供了详尽的理论介绍,并在行使价和到期日之间对每种模型进行了校准。 研究结论主要体现在两个方面:首先,由于浮动微笑特性以及偏斜和峰度的变化,所分析的指数Lévy模型难以在整个期限内进行准确校准,从而导致长期OTM选择权被低估。对于短期期权而言,这些模型过度补偿了偏斜效应,因此会导致短期内期价过高。 其次,在捕捉市场动态方面,由于增加了复杂性和合并了资产收益率的风格属性(如利率和股息),Heston及Bates模型表现更佳。在R中完成了对利率和股息收益的恢复工作。从期权链中恢复这些变量的基本方法是:选择所有到期日的ATM呼叫次数,并使用看涨期权平价计算出相应的看跌期权价格,进而确定合适的利率r和股息收益率q以使市场上的实际看跌价格与通过理论模型推算的价格相匹配。
  • Matlab最小二乘蒙特卡罗法(LMS)_Monte Carlo___LMS_蒙特卡罗
    优质
    本文介绍了在MATLAB环境中应用最小二乘蒙特卡罗方法进行美式期权定价的技术,探讨了LMS算法的原理及其在处理美式期权中的优势。通过模拟分析,展示了如何利用该方法有效估计早锻炼权利的价值,并提供了相应的代码实现细节。 使用蒙特卡洛模拟实现美式期权定价的方法包括资产路径生成以及美式期权与欧式期权的定价。请提供相关的源代码,并附带参考文献。
  • -扩散
    优质
    本研究探讨了包含跳跃过程的扩散模型在期权定价中的应用,分析了该模型对金融衍生品估值的影响,并通过实证研究验证其有效性。 在金融数学领域内,期权定价理论一直是重要的研究主题之一,尤其自20世纪70年代以来随着期权交易的兴起而催生了大量相关研究。传统的Black-Scholes模型是最早期的一种期权定价工具,它假设标的资产价格遵循几何布朗运动,并且预期收益率和波动率都是常数。然而,在实际应用中这一模型存在一定的局限性,例如无法准确解释市场中的某些现象(如隐含波动率微笑)。因此,研究人员开始寻找新的理论框架来更精确地反映市场价格的实际情况,跳跃-扩散模型便是其中之一。 跳跃-扩散模型认为股票价格不仅遵循连续的布朗运动(即扩散过程),还会经历不连续的价格跳变。这种模型能够更好地捕捉到市场中突然出现的大规模波动,并且在拟合实际市场的价格分布方面表现得更为出色。 张瑜、李凡和严定琪在其论文《跳跃-扩散模型下的期权定价》中,深入探讨了在这种环境下进行期权估值的方法论框架。他们假设金融市场中有两种资产:一种是无风险的(如国债),另一种是有风险的(如股票)。在设定无风险利率恒定且有风险资产价格遵循跳跃-扩散过程的基础上,他们研究了如何计算不同类型的期权价值。 张瑜等人的工作首先假定了股票价格服从一般的跳跃-扩散动态,并给出了相应的定价公式。随后,他们进一步考虑了一个更复杂的模型——非齐次Poisson跳跃-扩散框架,在这个情形下无风险利率是时间的函数。通过运用随机微分方程技术结合期权在有效期内没有现金分红支付的情况,研究者们推导出了具体的解,并提出了几种新的定价公式。 在这个过程中,随机微分方程起到了关键的作用;它不仅能够描述价格的变化趋势(包括连续变动和离散跳变),还能模拟这些变化的动态特性。非齐次Poisson过程则允许跳跃发生的频率随时间改变,从而更贴近现实市场的复杂性。 论文的核心关注点在于随机微分方程、Poisson跳跃-扩散模型以及期权定价理论的应用与创新。这类研究成果对于金融市场参与者来说非常重要,因为它可以帮助投资者更好地理解并利用金融衍生品的价值评估方法进行决策。 张瑜和李凡均任职于兰州大学数学与统计学院,并专注于金融工程领域的研究;严定琪则是该院校的副教授,同样致力于这一专业方向的工作。通过这篇论文的研究成果可以看出学者们是如何将抽象的数学理论应用于解决实际金融市场问题中的定价难题上,这不仅推进了学术界的理解深度也促进了相关产品设计和服务创新的发展。 总之,这些理论和模型的进步与发展对于提高金融市场的运作效率以及推动新类型的金融产品的开发具有重要意义。
  • 二叉树
    优质
    本文探讨了在二叉树模型框架下美式看跌期权的定价方法,分析其早期行权的可能性,并通过数值模拟验证定价的有效性。 使用多时期二叉树模型来近似风险中性的几何布朗运动,并通过连续复利原理计算股票价格的上升因子和下降因子。构建二叉树后,在t(k)时刻确定期权可能的价格。根据期权属性(美式或看跌)以及执行价与最后一期各节点上的股价,计算出最后一个时期各个节点上期权的内在价值。利用倒推定价方法从最后的时间点开始,通过上升和下降的概率来计算相邻两个节点的期望值,并进行一期贴现以得到前一个时期的期权价格。重复此过程直至获得当前时刻的期权价格。
  • Heston 器:利 Heston 及条件蒙特卡洛法计算值 - MATLAB开发
    优质
    Heston期权定价器是一款基于MATLAB开发的工具,采用Heston模型和条件蒙特卡洛方法来精确评估欧式看涨期权的价值。 使用赫斯顿模型和条件蒙特卡罗方法计算欧式看涨期权价格的函数为 [call_prices, std_errs] = Heston(S0, r, V0, eta, theta, kappa, strike, T, M, N)。 输入参数如下: - S0:标的资产当前的价格。 - r:在期权有效期内年化的连续复利无风险利率,以小数形式表示的正数值。 - 赫斯顿模型相关参数包括: - V0:标的价格的初始波动率 - eta:波动率的标准差 - theta:长期平均值 - kappa:均值回归速度 - strike:期权执行价格向量。 - T:期权到期时间,以年为单位表示。 - N:每条路径的时间步数。 - M:蒙特卡罗模拟的路径数量。
  • 二叉树代码
    优质
    本段代码实现了一个计算欧式看涨期权价格的二叉树模型,适用于金融工程领域中衍生品定价的研究与应用。 欧式看涨期权二叉树代码可以用于计算期权的价格。该代码通过构建一个二叉树模型来模拟资产价格的波动,并根据不同的节点值进行递归或迭代地计算每一步可能的收益,最终得出期权的价值。这种算法能够提供一种直观的方式来理解金融衍生品定价理论中的关键概念,如风险中性概率、无套利原则等。
  • 扩散MATLAB源程序
    优质
    本MATLAB源程序运用跳扩散模型进行欧式期权定价,结合随机波动率与跳跃过程,提供金融工程领域研究和应用的有效工具。 这段代码是用于计算欧式期权价格的主程序,并且可以生成不同股票价格及利率情况下的欧式看涨期权图形。对于不同的参数设置(如跳跃幅度),该程序能够绘制相应的图表。
  • Matlab跌与二叉树程序
    优质
    本简介介绍了一个使用Matlab编写的金融工程工具——用于计算看跌和看涨期权价格的二叉树模型程序。此程序能够帮助投资者理解并预测不同市场条件下的期权价值变化,是学习与应用量化投资策略的重要资源。 假设标的资产为不付分红的股票,其当前市场价格为50元,波动率为每年40%,无风险连续复利年利率为10%。该股票的5个月期美式看跌期权执行价格(Strike)为50元,求此期权的价值。
  • MATLAB(B-S)实现
    优质
    本项目运用MATLAB编程语言实现了基于Black-Scholes模型的欧式期权定价算法。通过模拟金融市场的波动率与利率变化,为投资者提供精准的风险评估工具。 MATLAB实现欧氏期权定价(B-S模型)程序说明:本程序经过严格测试, 放心下载使用.代码介绍:欧式看涨期权和看跌期权是金融衍生品的一种,它们的价格可以通过Black-Scholes模型(简称B-S模型)来计算。B-S模型是一个关于欧式股票看涨/看跌期权的定价模型,基于一系列假定条件,如金融资产收益率服从对数正态分布、在期权有效期内无风险利率和金融资产收益变量恒定、市场无摩擦(即不存在税收和交易成本)以及该期权是欧式期权(在期权到期前不可实施)。