Advertisement

现代直流伺服控制技术及其系统设计。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
现代直流伺服控制技术及其系统设计目 录 代序言 前 言 第1章 绪论 1直流伺服控制技术的发展 2现代直流PWM伺服驱动技术的发展 2.1国内外发展概况 2.2直流PWM伺服驱动装置的工作 原理和特点 2.3功率控制元件的应用及控制 电路集成化 2.4PWM系统发展中待研究的 问题 3现代伺服控制技术展望 第2章 不可逆直流PWM系统 1无制动状态的不可逆PWM系统 1.1电流连续时PWM系统控制特性 分析 1.2电流断续时PWM系统控制特性 分析 2带制动回路的不可逆PWM 系统 第3章 可逆直流PWM系统 1双极模式可逆PWM系统 1.1T型双极模式PWM控制 原理 1.2H型双极模式PWM控制 原理 1.3双极模式PWM控制特性 分析 2单极模式可逆PWM系统 2.1H型单极模式同频可逆PWM 控制 2.2H型单极模式倍频可逆PWM 控制 3受限单极模式可逆PWM 系统 3.1受限单极模式同频可逆PWM 控制系统 3.2工作特性的定量分析 3.3计算机辅助分析 3.4受限单极模式倍频可逆PWM 控制 4控制方案的对比 第4章 PWM功率转换电路设计 1PWM功率转换用GTR 1.1开关特性 1.2GTR的功率损耗及PWM功率 转换电路对其特性的要求 1.3GTR存储时间对PWM系统的 影响 2GTR的损坏和保护 2.1GTR的耐压与损坏 2.2GTR的二次击穿和安全 工作区 2.3GTR暂态保护 3达林顿复合型功率模块的 应用 3.1复合型达林顿模块的电路 结构 3.2达林顿模块作为开关使用 3.3达林顿模块并行驱动 3.4达林顿模块的应用 4缓冲器设计和负载线整形 4.1缓冲器的必要性 4.2负载线分析 4.3在PWM系统中的缓冲器设计 举例 第5章 PWM系统控制电路 1脉宽调制器的一般特性及电路 1.1脉宽调制器的一般特性 1.2恒频波形发生器 1.3脉宽调制器 2保护型脉宽调制及脉冲分配电路 2.1双门限延迟比较的V/W电路 2.2二极管电桥反馈式窗口V/W 电路 2.3具有阻容延迟的PWM变换电路 2.4脉冲分配逻辑延时电路 3保护电路 3.1电流保护型式与特点 3.2保护电流的实时取样和霍尔效应电流 检测装置设计 3.3欠电压、过电压保护 3.4瞬时停电保护 3.5保护电路举例 4基极驱动电路 4.1基极恒流驱动 4.2基极电流自适应驱动电路 4.3自保护型基极驱动电路 4.4典型基极驱动电路 5控制电路集成化、模块化 5.1一种新型SG1731型PWM集成 电路 5.2晶体管驱动模块简介 5.3应用举例 第6章 PWM系统工程设计中的有关 问题 1功率转换电路供电电源的设计 问题 1.1泵升电压对功率转换电路及供电电源 的影响 1.2PWM系统中的反馈能量 1.3反馈能量的存储及其耗散 2PWM系统电流波形系数与电动机的有效出 力 3PWM开关频率的选择 4电枢回路附加电感的设计原则 5浪涌电流和电压抑制 5.1合闸浪涌电流的抑制 5.2浪涌电压吸收 第7章 PWM系统电磁兼容性设计 1电磁干扰模型分析和干扰传递 1.1干扰源 1.2敏感单元 1.3干扰传递方式 2抑制或消除干扰的方法 2.1PWM功率转换电路中GTR开关干 扰源抑制 2.2元器件的合理布局与布线 2.3接地设计 2.4屏蔽与隔离 2.5滤波 3PWM系统电磁兼容性设计导则 3.1电源 3.2电动机 3.3GTR固态开关 3.4开关控制器件 3.5模拟电路 3.6数字电路 3.7微型计算机 第8章 现代直流伺服控制元件与 线路 1直流伺服电动机 1.1对直流伺服电动机的要求 1.2直流伺服电动机的分类 1.3直流伺服电动机的数学模型 1.4直流伺服电动机开环驱动的稳态和 动态特性 1.5直流伺服电动机具有速度反馈驱动的 动态特性 2测速元件与电路 2.1模拟测速元件——直流测速 发电机 2.2数字测速元件——光电脉冲 测速机 2.3光电脉冲测速机在模拟速度闭环中 的应用 3位置测量元件与其轴角编码 3.1正余弦旋转变压器及其轴角编码 3.2同步机及其轴角编码 3.3感应同步器及其轴角编码 3.4数字/分解器(D/R)转换 3.5用单片微处理机实现轴角/数字 转换 4模块化轴角/数字转换器及转换器 系统的设计与应用 4.1模块化自整角机/旋转变压器-数字 转换器的工作原理 4.2模块化轴角/数字转换器的选用和 系统设计中的有关问题 4.3模块化转换器的典型应用举例 5无惯性快速相敏解调器 6直流伺服系统中的运算放大器 第9章 PWM直流伺服电动机控制 系统设计 1PWM系统设计概述 1.1系统设计步骤 1.2对伺服系统的主要技术要求 1.3选择方案的基本考虑 2执行电动机的选择和传动装置的 确定 2.1典型负载的分析与计算 2.2伺服电动机的选择 2.3传动比的选择和分配原则 2.4驱动装置选择方法归纳 3伺服检测装置的确定 3.1速度控制系统测量装置的选择 3.2位置控制系统测量装置的选择 4校正网络和调节器补偿形式的 选取 4.1串联校正 4.2并联校正 4.3反馈校正 4.4复合控制 4.5校正方式对比 5PWM驱动装置的设计 5.1伺服系统对PWM驱动装置 的要求 5.2功率转换电路型式的选择 5.3功率转换电路主要器件的选取 原则 5.4PWM控制电路的选取原则 5.5PWM开关频率的选取原则 5.6辅助装置的选择 6直流伺服系统工程设计(频域法) 6.1对数幅频特性的绘制及约束条件 6.2校正装置的计算 6.3多环路(从属控制)系统的设计 6.4复合控制系统的设计 7一个现代PWM直流伺服电动机控制 系统的分析与设计实例 7.1系统设计概述 7.2主要元器件和部件的选择与设计 7.3系统静、动态设计计算 第10章 PWM系统的微处理机 控制 1微处理机控制伺服系统的设计 和综合 1.1连续校正网络的等效数字滤波器 设计法 1.2ω平面上的频域设计法 1.3控制算法及流程的实现 1.4小结 2微处理机数字伺服控制系统的 工程实现 2.1微处理机控制PWM伺服系统的方案 确定 2.2A/D转换器、CPU和D/A转换器的主要性 能参数选择 2.3数字伺服系统的数据预处理 2.4比例因子的配置和溢出保护 2.5采样频率的选择 3微处理机与伺服元件、执行机构的 界面接口 3.1模拟量输入通道的设计 3.2直接数字测速的接口与实现 3.3微处理机与PWM功率转换装置的 匹配 第11章 单片数字信号处理器及其在现代 伺服控制系统中的应用 1单片数字信号处理器简介 1.1概述 1.2TMS32010的结构 1.3TMS32010指令集 1.4TMS32020简介 2用TMS320实现伺服系统补偿控制 2.1DSP的选择与系统开发周期以及开发 支援工具 2.2数字补偿器实现中的几个问题 2.3用TMS32010来实现补偿器和 滤波器 2.4TMS320系列DSP外围接口考虑 3TMS32010DSP在速率积分陀螺伺服稳 定系统中的应用 3.1系统描述 3.2系统模型与控制补偿 3.3数字控制器的硬件和软件结构 3.4程序编制举例 3.5DSP数字控制系统性能评价 第12章 专用集成电路构成的直流 PWM伺服系统设计 1L290、L291和L292功能简介 1.1L290转速/电压变换器 1.2L291数/模转换器及放大器 1.3L292PWM直流电机驱动器 2L292PWM直流电机驱动器对直流伺服 电机的速度控制 2.1模拟直流电压速度控制系统 2.2数字控制速度系统 2.3L292驱动功率扩展 3L290~L292直流伺服控制系统设计 指南 3.1电流调节回路的设计 3.2L290/L291外部参数选择和速度调节 回路设计 3.3位置环的设计 3.4误差分析 第13章 伺服系统的可靠性设计 1伺服系统可靠性的基本概念 1.1伺服系统的可靠性定义 1.2度量可靠性的指标 2伺服系统可靠性计算 2.1可靠性结构图的构成 2.2串、并联结构的可靠性特征量 计算 2.3伺服系统可靠性评价 3伺服系统可靠性工程设计导则和 方法 3.1元器件的选择和控制 3.2降额设计 3.3可靠的电路设计 3.4冗余设计 3.5电气互连技术 3.6自动故障检测设计 3.7小结 4伺服系统可靠性试验及其评定 方法 4.1伺服系统可靠性试验计划 4.2伺服系统可靠性试验方法简介 附录 附录A BESK-FANUC永磁直流伺服 电动机组技术性能参数 附录B 光电编码器技术性能参数 附录C 国产轴角/数字、数字/轴角转换 模块的技术性能参数及国外互换 型号对照。 附录D PWM系统常用大功率晶体管、模块 及驱动电路技术性能参数 附录E LEM电流电压传感器模块的 技术性能参数及应用 参考文献

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 当前
    优质
    本论文聚焦于当今直流伺服控制系统的核心技术与设计理念,深入探讨了其在工业自动化中的应用,并展望未来发展方向。 现代PWM伺服控制系统设计 目录: 第1章 PWM技术基础 第2章 大功率晶体管及其驱动电路原理与应用 第3章 电流环的设计、实现及故障诊断方法 第4章 转速/电压控制回路的分析和计算,以及位置跟踪误差补偿算法的研究 第5章 模拟伺服控制器设计技术 6. 微处理器在PWM控制系统中的应用 7. 单片数字信号处理器及其在现代伺服系统中的使用案例研究 8. 专用集成电路构成直流PWM伺服系统的构建指南 9. PWM伺服系统的可靠性工程及故障检测策略 附录: A. BESK-FANUC永磁直流伺服电动机的技术参数 B. 光电编码器技术性能指标 C. 国产轴角/数字、数字/轴角转换模块的规格与国外型号对照表 D. PWM系统常用大功率晶体管及驱动电路特性数据 E. LEM电流电压传感器模块的技术规范和应用说明 参考文献
  • 算机课程——电机的实.doc
    优质
    本文档详细介绍了基于计算机控制技术的直流伺服电机控制系统的设计与实现过程。通过理论分析和实验验证相结合的方法,探讨了系统硬件选型、软件编程及性能测试等关键环节,为相关领域提供了实践参考。 计算机控制系统课程设计——直流伺服电机控制系统.doc 该文档内容主要围绕基于计算机控制系统的直流伺服电机的设计与实现进行详细阐述。涵盖了理论分析、系统构建以及实验验证等多个方面,旨在通过实际项目加深学生对相关概念和技术的理解和应用能力。
  • 点动自动_485_电机_
    优质
    本产品采用先进的485通讯协议实现精准的点动与自动化控制,适用于伺服电机及各类伺服控制系统。具有高效、稳定的特点,广泛应用于工业制造领域。 点动自动控制伺服技术在工业自动化领域广泛应用,主要用于精确定位、速度及力矩控制等方面。485控制伺服通过RS-485通讯协议实现对伺服电机的远程操作与监控,支持多设备在网络上的双向通信,并具备远距离传输和抗干扰能力强的特点。通常情况下,这些伺服电机采用MODBUS协议进行数据交换。 modbus_snc51文件可能是关于如何配置及使用MODBUS协议来控制SNC51型号伺服驱动器的文档或代码示例。该驱动器支持MODBUS RTU功能,可以与昆仑通泰触摸屏等上位机设备通信。通过这些工具,用户能够设定电机的速度、位置和方向,并实时监控其状态。 点动控制是指根据脉冲指令使电机进行短暂正转或反转的操作方式,常用于调试及精确定位;而自动运行则是在预设程序下持续工作的模式,适用于生产线上的特定任务。伺服控制系统的关键在于反馈机制:内置编码器提供精确的位置、速度和扭矩信息,帮助系统实时调整状态以确保高精度与稳定性。 总的来说,485控制伺服电机涉及到串行通信技术、MODBUS协议及昆仑通泰触摸屏的应用等知识领域。工程师需掌握这些技能才能有效设计并调试点动自动控制系统。通过学习modbus_snc51相关资料,可以更好地理解如何利用MODBUS协议连接触摸屏与伺服驱动器实现电机的精确控制。
  • 有刷电机作方案与
    优质
    本项目专注于直流有刷伺服电机控制系统的设计与实现,涵盖硬件选型、电路设计及软件开发等环节,旨在优化系统性能和稳定性。 在直流有刷伺服电机控制系统的设计中,PID(比例-积分-微分)控制算法起着核心作用。这种控制策略广泛应用于各种自动化系统中,因为它的稳定性、快速响应和精确控制能力。 一、PID控制器基本原理 PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。比例项直接影响系统的响应速度,积分项负责消除稳态误差,而微分项则有助于减小超调和提高系统的稳定性。 1. 比例项(P):P控制器根据当前误差与设定值的偏差进行调整,立即对系统进行响应,但可能会导致系统振荡。 2. 积分项(I):I控制器通过累积过去的误差来逐步消除稳态误差,使得系统能长期稳定在设定值。 3. 微分项(D):D控制器根据误差的变化率进行调整,可以预测未来的误差趋势,从而提前做出反应,减少超调和改善系统的响应速度。 二、直流有刷伺服电机控制 直流有刷伺服电机因其结构简单、成本较低且控制性能良好,被广泛应用于工业自动化、机器人等领域。在PID控制下,电机的转速、位置和力矩可以通过调节输入电压来精确控制。 1. 转速控制:通过测量电机的电流或电压,计算出实际转速并与设定值比较,然后通过PID算法调整输入电压,使电机转速接近设定值。 2. 位置控制:通过编码器或霍尔效应传感器获取电机的位置信息,通过PID控制调整电机的角度,实现精确定位。 3. 力矩控制:根据电机的负载变化,PID控制器动态调整输入电压,确保电机提供稳定的输出力矩。 三、系统设计流程 1. 系统建模:确定电机的动态模型,包括电气和机械特性,如反电动势、惯量、摩擦系数等。 2. PID参数整定:根据系统模型和实际需求,通过试错法、Ziegler-Nichols法则或其他优化方法,调整PID参数(Kp、Ki、Kd)。 3. 控制器设计:根据PID算法编写程序源码,实现电机控制逻辑。 4. 原理图与PCB设计:设计电路板,包括电源、驱动电路、信号处理和接口电路等,确保系统稳定运行。 5. 硬件实现:制造PCB并焊接元件,完成硬件组装。 6. 调试与优化:连接电机和控制器,进行系统测试,通过实验数据对PID参数进行微调,优化系统性能。 四、资料分析 相关文档可能包含以下内容: - PID控制理论的详细解释 - 直流有刷伺服电机的工作原理及特性 - 控制系统设计的原理图和PCB布局图 - PID控制器的程序源码 - 实验指导和调试方法 - 相关参考文献和案例研究 直流有刷伺服电机控制系统的设计是一门涉及电子工程、自动控制和机械工程等多学科领域的综合性技术。通过运用PID控制策略,可以实现对电机的高效、精确控制,满足各种应用场景的需求。
  • 柔性和
    优质
    直流柔性和其控制技术一文深入探讨了现代电力系统中直流输电系统的灵活性及其先进控制策略,旨在提高能源传输效率和稳定性。 柔性直流输电技术涉及先进的控制策略与拓扑结构设计。这种电力传输方式利用了电压源换流器(VSC)来实现非同步连接的交流系统之间的稳定、高效的能量传递,尤其适用于海上风电场等可再生能源发电系统的接入和电网稳定性增强。 在柔性直流输电控制系统中,关键要素包括但不限于控制算法的设计与优化,以确保电力传输过程中的动态响应速度及稳态性能。同时,拓扑结构的选择对于提高整个系统效率和可靠性至关重要。常见的VSC-HVDC(电压源换流器高压直流)方案具有模块化、灵活性高等特点,在现代电网中扮演着重要角色。 综上所述,柔性直流输电技术的控制策略与拓扑设计是实现高效能电力传输的关键所在。
  • 三环的运动
    优质
    《三环控制系统下的运动伺服技术》一文深入探讨了在现代工业自动化领域中,位置、速度和扭矩三环控制策略如何优化机械运动控制性能。文中分析了该技术原理及其应用优势,并讨论其未来发展趋势。 运动伺服通常采用三环控制系统,从内到外分别是电流环、速度环和位置环。
  • 基于FPGA的电机.pdf
    优质
    本文探讨了基于FPGA技术实现的直流伺服电机控制系统的开发与应用,详细分析了系统设计、硬件架构及软件编程等关键技术。 直流伺服电机处理器如单片机和DSP能够生成PWM信号并捕获电机编码器信号,但这些设备的PWM通道数量和编码器捕获通道有限,难以满足对多个直流电机进行伺服控制的需求。因此,设计基于FPGA的直流伺服电机控制器是必要的。