Advertisement

高斯混合模型中EM算法的应用及MATLAB实现代码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文章介绍了在高斯混合模型中使用期望最大化(EM)算法的方法,并提供了详细的MATLAB实现代码供读者参考学习。 本段落介绍了EM算法的原理及其在高斯混合模型中的应用,并使用Matlab进行了编程实现,评估了其性能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • EMMATLAB
    优质
    本文章介绍了在高斯混合模型中使用期望最大化(EM)算法的方法,并提供了详细的MATLAB实现代码供读者参考学习。 本段落介绍了EM算法的原理及其在高斯混合模型中的应用,并使用Matlab进行了编程实现,评估了其性能。
  • EMMATLAB-EM_GMM:EM
    优质
    这段MATLAB代码实现了利用期望极大(EM)算法对数据进行高斯混合模型(GMM)拟合,适用于聚类分析和概率建模。 EM算法在Matlab中的代码实现(例如EM_GMM)用于拟合高斯混合模型(GMM)。以下是使用该方法安装GMM的步骤: 函数定义:`P=trainGMM(data, numComponents, maxIter, needDiag, printLikelihood)` 参数说明: - `data`: 一个NxP矩阵,其中行代表点,列代表变量。例如N个二维点将有N行和2列。 - `numComponents`: 高斯混合模型的成分数量 - `maxIter`: 运行期望最大化(EM)算法拟合GMM的最大迭代次数 - `needDiag`:设置为1表示需要对每个组件使用对角协方差矩阵。
  • EMMatlab
    优质
    本简介提供了一个基于Matlab编程环境下的EM(期望最大化)算法实现案例,专为处理混合高斯模型设计。通过迭代优化参数,该代码能够有效估计数据集中不同高斯分布的成分和特性,适用于模式识别、机器学习等领域研究者参考使用。 EM算法混合高斯模型应用的Matlab代码,包含详细注释。
  • 基于MatlabEM
    优质
    本文利用MATLAB软件平台,详细探讨了期望最大化(EM)算法在处理混合高斯模型参数估计问题上的具体实现方法和步骤。通过实例分析展示了EM算法的有效性和便捷性。 使用Matlab实现EM算法来解决混合高斯模型问题。代码包括用混合高斯模型生成测试数据的部分,并且有二维图像的生成代码。初值选取方法有两种:模式随机选取和kmeans方法选取。
  • 基于MATLABEM
    优质
    本项目采用MATLAB编程语言实现了基于期望最大化(EM)算法的混合高斯模型。该算法在模式识别与聚类分析中有着广泛应用。 用MATLAB实现基于混合高斯模型的EM算法,并确保代码可以直接运行且能够绘制图表。
  • EM
    优质
    简介:本文探讨了在高斯混合模型中应用期望最大化(EM)算法的过程与原理,解释其如何有效估计模型参数。 一个使用EM算法求解高斯混合模型的聚类源程序。
  • 基于MATLAB(GMM)EM
    优质
    本项目利用MATLAB语言实现了高斯混合模型(GMM)及其参数估计的关键算法——期望最大化(EM)算法。通过实际数据集的应用,验证了该方法的有效性和准确性。 高斯混合模型GMM与EM算法的Matlab实现代码可供用户直接运行并查看结果,欢迎下载后进一步讨论。
  • 基于EMMatlab
    优质
    本段落提供了一套使用MATLAB编写的基于期望最大化(EM)算法实现高斯混合模型(GMM)的代码。适用于聚类分析和概率建模,广泛应用于机器学习领域。 高斯混合模型(EM算法)的Matlab代码,并附有简单实例测试估计效果。
  • EMMATLAB-GMM:适于不同形状EM
    优质
    本资源提供了一个用MATLAB编写的程序,用于实现高斯混合模型(GMM)中的期望最大化(EM)算法。该工具可以处理多种形状参数的GMM,为用户研究和应用提供了便利。 该代码实现了EM算法以适应MATLAB中的高斯混合模型,并使用样本数据进行处理。此数据集包含三个类别,每个类别有1000个观察值;每项观察有两个特征。数据文件将观测作为行显示,其元素为第一和第二列,类标签则在第三列中。 代码中,“class1”代表“蓝色”,“class2”对应于“红色”,而“class3”表示“绿色”。每个类别被分为两组:一组用于训练,另一组用于测试。运行程序时只需执行run.m文件即可开始处理过程。 用户可以调整参数以确定高斯数量和期望最大化的迭代次数。“EM.m”函数通过设置“gaussCase”参数来决定协方差矩阵的类型(球面、对角线或任意)。在主流程之前,初始化混合参数α、mu及sigma值。使用k-means算法计算的聚类中心作为初始μ值;σ则被设定为2x2维恒等矩阵。由于混合参数总和需等于“1”,因此每个组件的alpha(即混合比例)均设为 1/ 组件数量。 初始化所有必要参数后,EM算法开始运行,在每次迭代中进行更新处理。
  • EM分布MATLAB
    优质
    本项目提供了一套基于MATLAB编写的代码实现,运用EM(期望最大化)算法对混合高斯分布进行参数估计。通过迭代优化过程,该程序能够有效地识别并分离复杂的多模态数据集中的各个高斯成分。适用于统计分析、模式识别等领域中涉及聚类和密度估算的任务。 对两个一维高斯分布产生的无先验知识样本进行分类,最终目的是确定每个样本属于哪个高斯分布,并计算出各分布的均值和方差的概率。