Advertisement

存储技术原理剖析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《存储技术原理剖析》一书深入探讨了现代数据存储系统的内部运作机制,涵盖了从硬盘驱动器到固态存储的技术细节,并分析了不同的存储架构和优化策略。适合IT专业人士和技术爱好者阅读。 深入了解计算机内部运作原理以及存储技术和分析理论。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《存储技术原理剖析》一书深入探讨了现代数据存储系统的内部运作机制,涵盖了从硬盘驱动器到固态存储的技术细节,并分析了不同的存储架构和优化策略。适合IT专业人士和技术爱好者阅读。 深入了解计算机内部运作原理以及存储技术和分析理论。
  • 深度加密盘(SED)
    优质
    本文章深入探讨并分析了存储加密盘(SED)技术的工作原理、优势及应用场景,旨在为读者提供全面理解与应用指导。 目前的SED(Self-Encrypting Drive)技术主要目的是保护硬盘上的数据免受非法访问,并遵循联邦信息处理标准(FIPS)140-2 Level 3的安全要求,确保了极高的安全级别。 在实现SED时,必须配置一个符合FIPS标准的密钥管理系统(Key Management Center, KMC)。KMC可以是独立设备或者集成到存储系统中。它支持双机热备模式以提高系统的可靠性和安全性,并可以通过管理网口与多台加密存储系统相连,负责它们之间的密钥管理和分发工作。 每台KMC能够处理上百个存储系统和数百万的对称密钥。在数据保护过程中,存储阵列控制器不缓存或静态保存任何用于加密的数据密钥(Data Encryption Key, DEK),而是作为与SED设备及第三方密钥管理服务器之间通信的安全通道使用。 此外,FIPS 140-2标准下的KMC确保了透明的操作过程不会影响到系统的性能。所有数据保护功能如镜像、快照等均可正常运作而无需担心加密和解密速度的问题。通过客户端-服务器(CS)模式进行操作指令的发出与执行,并采用密钥管理互联网协议(KMIP)来保证通信的安全性。 常见的KMC供应商,例如Thales和SafeNet,提供的解决方案不仅满足FIPS 140-2 Level 3标准的要求还具备高可用性的集群热备份及实时灾难恢复功能。它们支持完整的密钥生命周期管理,并符合NIST SP800-57等安全规范。 对于SED硬盘而言,企业级产品通常提供三种加密级别:静态数据和安全擦除保护(FIPS Level 2)、全额数据保护(Full SED)以及仅再利用保护(ISE)。不同的SED类型如SDE-ISE、Full-SDE及FIPS-SED具有独特的功能特性。例如瞬间销毁密钥、分段销毁机制、“Auto-Lock”模式等安全防揭手段。 在加密过程中,通过认证密钥(Authentication Key, AK)从KMC获取数据加密密钥,并且AK由KMC管理而DEK则被存储于硬盘内经过加密处理的状态。只有当AK得到验证后才能读写相应盘内的信息。这一过程包括设置、认证和更新等环节均依赖于KMC,从而确保了整个系统的安全性。 综上所述,结合SED技术与FIPS标准下的密钥管理系统为数据提供了全面的安全保障机制,在保护硬盘内部及传输过程中敏感信息的同时也满足了企业级应用对于高安全性的需求。
  • /缓中SDRAM器的——三星和SK海力士的独特之处
    优质
    本文深入探讨了SDRAM存储器的工作原理及其在现代计算系统中的重要性,并着重分析了三星与SK海力士这两家公司在该领域的独特技术和市场优势。 根据拆解分析机构Techinsights最近对市面上先进DRAM存储器单元(cell)技术的详细比较发现,尽管有预测指出在30纳米制程下DRAM存储器单元将面临微缩极限,但各大制造商仍将持续推进至2x纳米甚至1x纳米节点。Techinsights近期分析了三星、SK海力士、美光/南亚与尔必达已量产的3x纳米SDRAM存储器单元阵列结构的制程技术及元件架构,并推断该技术仍有进一步微缩的空间,而共同解决方案是结合埋入式字线(buried wordlines, b-WL)和鳍状存取晶体管。
  • RDMA实现详解.zip
    优质
    本资料深入解析远程直接内存访问(RDMA)技术的核心原理及其在高性能计算、网络通信中的应用,并详细讲解其实现方法。适合研究开发者学习参考。 本段落详细总结了RDMA的相关内容,干货满满。从第一章的RDMA背景简介开始,到第二章探讨支持RDMA的各种网络协议,第三章阐述RDMA技术的优势,第四章介绍不同实现方式,并一直延续至第十四章。
  • NVMe标准与的深入.pdf
    优质
    本PDF文档深入探讨了NVMe(非易失性存储器 express)技术的标准和工作原理,适合对高性能存储系统感兴趣的读者。文中详细解析了NVMe协议的优势及其在现代计算环境中的应用价值。 NVMe技术标准和原理深度解析.pdf 这份文档深入探讨了 NVMe 技术的标准与工作原理。
  • 基于Linux 2.6内核源代码的
    优质
    本论文深入剖析了基于Linux 2.6内核源码的存储技术原理,详细探讨文件系统、块设备驱动及相关组件的工作机制与优化策略。 存储技术原理分析基于Linux 2.6内核源代码的经典作品。
  • Flash器在/缓中的工作及其具体步骤
    优质
    本文章详细解析了Flash存储器的工作机制及其在存储和缓存技术中的应用步骤,为读者深入理解其运行机理提供了全面指导。 闪存是一种非易失性存储技术,全称是电可擦可编程只读存储器(EEPROM)。其工作原理基于浮置栅极的电荷储存能力。 **一、结构与组成** 闪存的基本单位包含源极(Source)、漏极(Drain)和栅极(Gate),这类似于场效应管。然而,不同于普通FET的是,在闪存中存在一个特殊的浮动栅级(Floating Gate)。这个浮置栅级被一层二氧化硅绝缘层包裹着,保护其内部的电荷不会轻易流失。因此,当电子进入或离开浮置栅极时,会形成稳定的电压状态,并能长期保存这些信息。 **二、闪存类型** 1. **NAND型闪存** - 数据写入与擦除均依赖于隧道效应。通过施加特定的电压使电流从硅基层穿过绝缘层进入或离开浮置栅极来改变电荷,从而完成数据记录。 - 该类型的存储器适合大规模的数据储存场景,例如固态硬盘(SSD)和U盘。 2. **NOR型闪存** - 数据擦除同样基于隧道效应。但写入时采用的是热电子注入方式:当电流从浮置栅极流向源极时完成电荷的转移。 - NOR类型的特点是快速的数据读取能力,适用于嵌入式系统和需要迅速执行代码的应用场合。 **三、操作步骤** 1. **数据写入** - 写入过程中通过控制门(Control Gate)向浮置栅级施加电压来改变其电荷状态。 2. **数据读取** - 为了获取存储的数据,检测每个单元的电压是否超过阈值。如果超过了设定的门槛,则认为该位置储存的是0;反之为1。 3. **擦除操作** - 擦除是以块(Block)的形式进行:向整个区域施加高电压以清除所有浮置栅级中的电荷,恢复到初始状态。 **四、闪存颗粒结构** - 一个闪存单元由多个Page构成。每个Page包含成千上万个门,而每一个门存储1bit的数据量。 - Page是最小的读写单位;Block则是最小擦除单位,通常大小为4KB。 随着技术进步和需求增加,多级别单元(MLC、TLC等)被开发出来以提高数据密度。但是这同时带来了性能上的挑战,如降低耐久性和访问速度等问题。
  • 与实践
    优质
    《云存储技术分析与实践》一书深入浅出地探讨了云计算中的核心环节——云存储技术。本书不仅涵盖了云存储的基本概念、关键技术及发展趋势等理论知识,还提供了丰富的实战案例和操作指南,帮助读者全面掌握云存储的应用技巧。无论是初学者还是专业人士,都能从中获得宝贵的知识和灵感。 云存储技术分析与实践
  • RDMA、比较与实现详解.rar
    优质
    本资源深入解析远程直接内存访问(RDMA)技术的工作原理及其与其他网络通信机制的区别,并详细讲解其具体技术实现方法。适合对高性能网络编程感兴趣的开发者和研究人员学习参考。 第1章 RDMA背景简介 ............................................. 5 第2章 哪些网络协议支持RDMA ..................................... 8 2.1 InfiniBand(IB)........................................... 8 2.2 RDMA过融合以太网(RoCE)................................... 8 2.3 互联网广域RDMA协议(iWARP)................................ 8 第3章 RDMA技术优势 ............................................. 9 第4章 RDMA有哪些不同实现 ...................................... 10 第5章 RDMA有哪些标准组织 ...................................... 14 第6章 应用和RNIC传输接口层 .................................... 18 6.1 内存Verbs(Memory Verbs)............................... 19 6.2 消息Verbs(Messaging Verbs)............................ 20 第7章 RDMA传输分类方式 ........................................ 20 7.1 RDMA原语................................................ 21 7.2 RDMA 队列对(QP)....................................... 23 7.3 RDMA完成事件............................................ 23 7.4 RDMA传输类型............................................ 24 7.5 RDMA双边操作解析........................................ 26 7.6 RDMA单边操作解析........................................ 27 7.7 RDMA技术简单总结........................................ 27 第8章 InfiniBand技术和协议架构分析 ............................ 29 8.1 InfiniBand技术的发展.................................... 29 8.2 InfiniBand技术的优势.................................... 30 8.3 InfiniBand基本概念...................................... 32 8.4 InfiniBand协议简介...................................... 33 8.4.1 物理层 ............................................ 34 8.4.2 链路层 ............................................ 34 8.4.3 网络层 ............................................ 34 8.4.4 传输层 ............................................ 35 8.4.5 上层协议 .......................................... 35 8.5 IB应用场景.............................................. 36 第9章 InfiniBand主流厂商和产品分析 ............................ 37 9.1 InfiniBand网络和拓扑.................................... 38 9.2 软件协议栈OFED.......................................... 42 9.3 InfiniBand网络管理...................................... 43 9.4 并行计算集群能力........................................ 44 9.5 基于socket网络应用能力.................................. 45 9.6 存储支持能力............................................ 45 9.7 Mellanox产品介绍........................................ 46 9.8 Infiniband交换机........................................ 48 9.9 InfiniBand适配器........................................ 51 9.10 Infiniband路由器和网关设备............................. 52 9.11 Infiniband线缆和收发器................................. 53 9.12 InfiniBand主要构件总结................................. 54 9.13 InfiniBand对现有应用的支持和ULPs支持................... 55 第10章 RDMA over TCP(iWARP)协议和工作原理 ..................... 56 10.1 RDMA相关简介........................................... 57 10.2 RDMA工作原理........................................... 59 10.3 RDMA 操作类型.......................................... 61 10.4 RDMA over TCP详解...................................... 61 第11章 RoCE(RDMA over Converged Ethernet)原理 ............... 65 第12章 不同RDMA技术的比较 ..................................... 67 12.1 IB和TCP、Ethernet比较.................................. 69 12.2 RoCE和InfiniBand比较................................... 70 12.3 RoCE和IB协议的技术区别................................. 71 12.4 RoCE和iWARP的区别...................................... 71 第13章 Intel Omni-Path和InfiniBand对比分析 .................... 72 13.1 Intel True Scale Fabric介绍............................ 73 13.2 Intel True Scale InfiniBand产品........................ 74 13.3 Intel Omni-Path产品.................................... 76 第14章 RDMA关键技术延伸 ....................................... 80 14.1 RDMA指令的选择......................................... 80 14.2 慎用atomic类指令....................................... 81 14.3 减少交互次数........................................... 82 14.3.1
  • 深入DeepSeek及应用场合
    优质
    本文将详细探讨DeepSeek技术的工作机制,并分析其在不同领域的具体应用场景,帮助读者全面理解这一先进技术。 DeepSeek是一种基于深度学习技术的智能搜索与数据挖掘工具,适用于大规模复杂数据的处理与分析。其核心技术包括深度神经网络、自然语言处理、高效索引结构以及多模态数据处理能力,可广泛应用于科研、企业级搜索、医疗健康和情报安全等领域。 DeepSeek的优势在于高效的智能化能力,能够处理海量且复杂的数据,并快速提供精准的分析结果以支持实时决策。然而,在使用过程中也会遇到一些挑战,如数据隐私保护、计算资源消耗以及模型解释性等潜在问题。 通过结合深度学习与搜索技术,DeepSeek帮助用户在复杂的环境中获得深刻的洞察力,为大数据时代的智能化管理提供了强有力的支持。