Advertisement

数字上下变频的混频原理及其在FPGA中的实现.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了数字上下变频技术及其核心混频原理,并详细介绍了该技术如何应用于FPGA平台的具体实现方法。 一个快速搭建的混频模块能够支持IQ复信号的上变频,并包含数控振荡器NCO和复数乘法模块。该模块可以将输入信号的频谱搬移到指定频率点位置。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • FPGA.rar
    优质
    本研究探讨了数字上下变频技术及其核心混频原理,并详细介绍了该技术如何应用于FPGA平台的具体实现方法。 一个快速搭建的混频模块能够支持IQ复信号的上变频,并包含数控振荡器NCO和复数乘法模块。该模块可以将输入信号的频谱搬移到指定频率点位置。
  • FPGA
    优质
    本论文探讨了在FPGA平台上设计和实现高效的数字下变频技术,旨在提升无线通信系统的性能与灵活性。通过优化算法和硬件架构,实现了低功耗、高速度的数据处理能力,为现代通信系统提供了可靠的解决方案。 数字下变频器(Digital Down-Converter,DDC)是宽带数字接收机的关键组件之一。本段落介绍了一种基于FPGA芯片Stratix II EP2S60F672C4设计的可调带宽数字下变频器(VB-DDC),适用于宽带数字接收机。该VB-DDC融合了传统数字下变频结构和多相滤波结构的优点,能够对输入中频信号进行高效高速处理,并支持在较大范围内灵活配置信号处理带宽。硬件调试结果证明了本设计的有效性。
  • 信号处——基于FPGA
    优质
    本项目专注于利用FPGA技术实现高效的数字信号上变频和下变频过程,特别适用于无线通信系统中的应用。通过优化算法设计和硬件架构,旨在提高系统的性能及灵活性。 数字上变频器(DUC)和数字下变频器(DDC)在通信系统中的应用非常广泛,主要用于信号采样速率的转换。当需要将基带信号转换至中频频段时,会使用到数字上变频器;而从中间频率向低频或基带进行变换,则需要用到数字下变频器。DUC和DDC通常涉及混频操作以实现频率变化,并且它们还负责采样率的调整。 具体来说,这些设备的设计主要依据所需的转换比率来确定。例如,在WiMAX系统中,典型的转换率为8—10阶。对于这样的低阶数转换情况,仅需使用FIR(有限脉冲响应)滤波器即可满足要求;然而当需要更高的采样率变换时,则必须在DDC/DUC结构里加入级联积分梳状(CIC)滤波器。 数字下变频过程包括了对信号进行过滤以及降低输出数据速率。这一部分的处理通常涉及数控振荡器(NCO)、半带抽取滤波器、FIR滤波器等组件,同时还有增益调整和复数到实数值转换等功能模块。每一个独立的功能单元都可以通过控制线路单独启用或关闭。 以余弦信号为例,在上下变频过程中可以通过DDC&DUC来恢复原始的信号特征。
  • VHDL语言FPGA(DDC)
    优质
    本文章介绍了利用VHDL语言在FPGA平台上实现数字下变频(DDC)的设计方法和技术细节,深入探讨了其优化与应用。 用VHDL编写的一个数字下变频器可供参考。
  • 基于FPGA
    优质
    本项目研究并实现了基于FPGA技术的数字下变频系统设计与优化。通过硬件描述语言编程,将射频信号转换为基带信号,应用于无线通信领域。 通过使用FPGA实现数字下变频,并结合MATLAB进行仿真设计,我们得到了CIC、FIR、HB等滤波器的参数。对各个模块进行了详细的仿真验证,并完成了总体仿真验证及硬件调试,最终取得了较好的效果。
  • DDSFPGA
    优质
    本文章介绍了DDS(直接数字频率合成)技术的基本原理,并详细探讨了如何在FPGA(现场可编程门阵列)平台上实现该技术,包括其设计流程和优化方法。 直接数字频率合成技术(DDS)是一种从相位概念出发的全数字频率合成方法,用于生成所需波形。该技术以其高频率分辨率、快速的频率变化能力和连续可调的相位特性,在数字通信系统中广泛应用,并被认为是信号生成的理想选择。市场上有许多集成且多功能的专用DDS芯片,如AD9835、AD9954和AD9959等。 然而,在某些特定的应用场景下,这些现成的DDS芯片可能无法满足系统的具体需求,尤其是在控制方式或频率调整方面存在较大差异时。现场可编程门阵列(FPGA)器件则具备快速的工作速度、高集成度、可靠性和可现场编程的优点。因此,使用FPGA来设计符合自身特定要求的DDS电路成为一种有效的解决方案。
  • 基于FPGA器(DDC)
    优质
    本项目致力于在FPGA平台上开发高效的数字下变频器(DDC),旨在优化信号处理流程并增强通信系统的性能和灵活性。 使用的是Vivado 2018.3版本,并且有MATLAB代码和FPGA代码。首先,在MATLAB中生成一个6MHz的正弦信号,采样率为200MHz,采样点数为2048个样本,然后将此正弦信号写入到coe文件中。接着将该coe文件放入ROM IP核,并循环读取其中的数据。 随后使用DDS IP核产生5MHz的正弦信号。接下来,把6MHz和5MHz两个频率的正弦波进行混频操作,从而获得1MHz和11MHz两组叠加后的正弦信号。 然后通过CIC滤波器降低采样率,由于输入到CIC滤波器中的信号采样率为200MHz且抽取因子为4,因此它的截止频率设定在25MHz。经过此步骤后,输出的仍然是包含1MHz和11MHz叠加正弦信号。 最后通过FIR低通滤波器来移除掉11MHz的干扰成分,仅保留所需的1MHz正弦信号。
  • DDSFPGA代码
    优质
    本文章详细介绍了DDS(直接数字频率合成)的基本原理,并提供了其在FPGA上实现的具体代码示例,帮助读者理解如何将理论知识应用到实践操作中。 关于DDS的原理及FPGA实现代码的相关资料可以下载参考,希望能对您有所帮助。