Advertisement

贝叶斯优化SLIP模型参数:贝叶斯优化...

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究采用贝叶斯优化方法对SLIP(弹簧加载倒立摆)模型的参数进行优化,旨在提高模拟效率与准确性。通过构建高维参数空间内的概率模型,有效指导搜索过程,减少计算成本,适用于机器人动态平衡控制等领域。 弹簧加载倒立摆(SLIP)步态模型可以通过多个参数进行描述,例如弹簧刚度、机器人质量、着地角以及腿长。调整这些参数往往需要耗费大量时间,而贝叶斯优化则提供了一种寻找最佳步态参数的有效途径。用户可以设定系统的初始条件,然后通过贝叶斯优化来确定在给定的条件下最合适的弹簧刚度和落地角度。根据不同的初始设置,贝叶斯优化能够识别出多种步态模式,包括步行、跑步以及跳跃等不同类型的步态模式。关于更多详细信息,请参阅附件中的PDF文件。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SLIP...
    优质
    本研究采用贝叶斯优化方法对SLIP(弹簧加载倒立摆)模型的参数进行优化,旨在提高模拟效率与准确性。通过构建高维参数空间内的概率模型,有效指导搜索过程,减少计算成本,适用于机器人动态平衡控制等领域。 弹簧加载倒立摆(SLIP)步态模型可以通过多个参数进行描述,例如弹簧刚度、机器人质量、着地角以及腿长。调整这些参数往往需要耗费大量时间,而贝叶斯优化则提供了一种寻找最佳步态参数的有效途径。用户可以设定系统的初始条件,然后通过贝叶斯优化来确定在给定的条件下最合适的弹簧刚度和落地角度。根据不同的初始设置,贝叶斯优化能够识别出多种步态模式,包括步行、跑步以及跳跃等不同类型的步态模式。关于更多详细信息,请参阅附件中的PDF文件。
  • 基于的LSTM.zip
    优质
    本作品探讨了利用贝叶斯优化技术提升长短期记忆网络(LSTM)模型性能的方法,并提供了详尽实验分析。 LSTM_BayesianHyperparameterTuning.zip
  • ACO-master.zip_MATLAB网络_aCO_master_蚁群算法_matlab__结构
    优质
    本项目为MATLAB环境下实现的蚁群算法(aCO)与贝叶斯优化结合的网络优化工具,适用于解决复杂路径规划及结构设计问题。下载后请解压ACO-master.zip文件获取完整代码和文档。 在MATLAB平台上实现基于蚁群优化的贝叶斯网络结构学习方法。
  • 与高过程.pdf
    优质
    本文档探讨了贝叶斯优化及其在机器学习中的应用,特别是通过高斯过程进行模型预测和参数调整的技术细节。适合研究人员和技术爱好者深入理解这一领域。 贝叶斯优化是一种基于概率的全局搜索策略,在处理黑盒函数优化问题上非常有效。这种方法利用贝叶斯统计来指导探索过程,并且特别适用于那些我们无法或不愿意分析其内部结构的问题。 在应用中,目标函数被视为一个随机变量集合,通常使用高斯过程进行描述。这是一种非参数概率模型,它定义了一组随机场的联合分布特性:任何有限子集都会遵循多维正态分布规律。 关键在于高斯过程中通过已有的观察数据来推测未知区域的概率分布。每次评估目标函数时,我们对整个系统的理解就会加深,并据此更新后验概率分布;这个新的预测模型则被用来决定下一步的探索方向——即最可能带来改进的地方。这通常涉及到计算“收购函数”,如预期改善(EI)或概率提高(PI),来确定最佳的新测试点。 贝叶斯优化的标准步骤包括: 1. 初始化:随机选取一组初始样本。 2. 选择最优解,使用某种策略比如锦标赛、比例或者截断等方法挑选出最优秀的解决方案。 3. 建模:利用选出的样本来构建贝叶斯网络。这一步骤涉及学习网络结构及参数的过程。 4. 新生成潜在优化方案,基于贝叶斯模型的联合分布采样得到新的可能解集。 5. 更新样本集合,替换旧有的数据点以形成更新后的群体。 6. 终止条件判断:如果达到了预定的最大迭代次数或最优值稳定不变,则停止;否则返回步骤2继续循环。 在构建贝叶斯网络的过程中,需要明确变量之间的依赖关系,并通过有向无环图(DAG)来表示。结构和参数的确定共同决定了各个变量间的条件概率分布规律。由于学习这种复杂模型的结构是一个NP难问题,通常采用贪心算法进行搜索,在效率与准确性之间取得平衡点;而贝叶斯信息准则或类似标准可以用来评估模型的质量。 高斯过程在优化中的作用在于它提供了一种自然的方式来估计目标函数的不确定性,并且能够方便地预测任何一点的目标值。由于其假设任意输出都遵循正态分布,因此可以在没有直接观测的情况下计算出概率分布,这对于决定下一步探索的方向至关重要。 综上所述,贝叶斯优化与高斯过程相结合为解决复杂的搜索问题提供了一种强大而灵活的工具,在需要高效地在大量可能解的空间中进行有效探索的同时考虑不确定性时表现尤为出色。
  • 实践:Bayesian Optimization
    优质
    贝叶斯优化是一种高效处理高维、昂贵目标函数优化问题的方法,在机器学习超参数调优中应用广泛。本文将深入介绍其原理及实践技巧。 贝叶斯优化是一种利用高斯过程来优化黑盒函数f(x)的技术(可能)。我想要高效地搜索并找到x_opt = argmax_x f (x)的值。假设评估f(x)需要一定的时间,程序可以按照以下步骤进行: t=0, D_t={} x_t = argmax A (x | D_t) y_t = f (x_t) D_ {t + 1} = D_t ∪ {(x_t, y_t)} 重复执行: t=t+1 通过迭代优化A(x|Dt)而不是直接难以处理的f(x),我们可以更容易地找到最优解。这里,A(x)代表Acquisition函数,以下是一些常见的Acquisition函数: 最大平均值 (MM) 改进概率 (PI) 预期改进 (EI) 让x_t成为这些Acquisition函数所期望的最大化点。
  • Matlab代码-Bayes-MTL-轨迹:基于多任务学习的轨迹
    优质
    本项目提供了一套基于贝叶斯多任务学习框架下的超参数优化Matlab代码,旨在构建和优化参数化的轨迹模型。通过集成多个相关任务的数据,有效提升了模型预测精度与泛化能力。 贝叶斯超参数优化的Matlab代码用于建模生物标志物轨迹的参数贝叶斯多任务学习模型。该模型同时为多个受试者构建并测试纵向轨迹模型,允许通过使用生物标志物相似性度量来共享不同受试者的模型信息(即耦合)。此代码基于我们的研究“利用参数贝叶斯多任务学习建模纵向生物标志物”和OHBM2018会议。文件结构如下:blr_sim目录包含用于模拟的顶级文件,而blr目录则存放大部分模型训练、预测及性能评估的相关代码;gpml-matlab-v4.0-2016-10-19子目录用来进行超参数优化工作,aboxplot子目录负责生成美观的箱线图。utils包含了一些基本实用功能。 在简单示例方面,blr_sim目录中有一个简单的例子供您运行和修改:simple_example模拟文件可以用于执行我们论文描述的模拟过程:sim_both_full命令将产生一些中间文件并创建两个图表(来自我们的研究),这些图表展示了50次模拟实验及两种不同的情景设定(截距变化与受试者轨迹斜率的变化)。上述操作需要数小时才能完成,因为它处理了8个场景、每个场景运行50次、每种情景包括4组数据以及2个不同的模拟情况。
  • Botorch:基于PyTorch的
    优质
    Botorch是一款建立在PyTorch上的库,专注于提供高效的贝叶斯优化工具,适用于机器学习模型的超参数调优和黑盒函数优化等问题。 BoTorch 是一个基于 PyTorch 的贝叶斯优化库,并且目前正处于积极开发的测试阶段。 选择 BoTorch 有几个原因:它提供了一个模块化、易于扩展的界面,用于构建贝叶斯优化原语,包括概率模型、采集函数和优化器。利用了 PyTorch 提供的功能,如自动微分以及对现代硬件(例如 GPU)的高度并行化的本地支持,并且使用的是与设备无关的代码。此外,BoTorch 支持基于蒙特卡洛方法的采集功能,这使得实现新思路变得简单明了而不必限制基础模型。 在 PyTorch 中可以无缝地集成 BoTorch 与深度和/或卷积架构。它还支持最新的概率模型,包括多任务高斯过程(GPs)、深度核学习、深层 GP 和近似推理等。 目标用户主要是贝叶斯优化和 AI 领域的研究人员以及资深从业人员。建议将 BoTorch 用作实现新算法的低级 API。
  • 机器学习结合lightgbm、和k折交叉验证+基于的过程及代码
    优质
    本项目运用LightGBM算法并结合贝叶斯优化技术进行超参数调优,并采用K折交叉验证评估模型性能,同时提供了基于贝叶斯优化的详细过程与Python实现代码。 本资源提供了一种基于LightGBM模型的贝叶斯优化过程代码实现方法。通过使用贝叶斯优化算法,该代码能够高效地调整LightGBM模型的超参数以提升模型性能。此外,还集成了k折交叉验证机制来更准确评估模型效果并减少过拟合的可能性。 适用人群包括机器学习爱好者、从业者、数据科学家和分析师以及对LightGBM模型及贝叶斯优化算法感兴趣的科研人员。 使用场景与目标:当需要利用LightGBM解决分类或回归问题时,可以借助本资源中的代码来优化模型超参数。适用于希望通过自动化方式调整模型参数以提高预测精度或者降低计算成本的情况。在开发阶段寻找最优的超参数组合也是适用场合之一,以此加快模型构建速度。 其他说明:该代码采用Python编写,并且依赖于LightGBM和Scikit-learn等机器学习库的支持。提供了详细的注释帮助用户理解与操作。可以根据具体需求修改相关配置以适应不同的使用环境。
  • 基于的LSSVM方法
    优质
    本研究提出了一种基于贝叶斯优化的LSSVM(最小二乘支持向量机)方法,通过自动调参提升模型预测性能。 贝叶斯优化最小二乘向量机是一种有效的优化方法,并且相对少见。