Advertisement

基于隐式差分方法的时间分数阶对流扩散方程近似解法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文提出了一种新颖的隐式差分方案来求解时间分数阶对流扩散方程,为复杂物理现象建模提供了高效准确的方法。 本段落提出了一种时间分数阶对流扩散方程的隐式差分近似方法。通过将一阶时间导数替换为分数阶导数,我们设计了一个计算效率高的隐式差分格式,并证明了该格式的有效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文提出了一种新颖的隐式差分方案来求解时间分数阶对流扩散方程,为复杂物理现象建模提供了高效准确的方法。 本段落提出了一种时间分数阶对流扩散方程的隐式差分近似方法。通过将一阶时间导数替换为分数阶导数,我们设计了一个计算效率高的隐式差分格式,并证明了该格式的有效性。
  • Caputo型反应-(2007年)
    优质
    本文提出了一种求解Caputo型分数阶反应-扩散方程的隐式差分方法,并分析了该方法的稳定性和收敛性,为相关领域提供了有效的数值计算手段。 分数阶微分方程在许多应用科学领域比整数阶微分方程更能准确地模拟自然现象。本段落研究了分数阶反应扩散方程,将一阶时间偏导数替换为Caputo分数阶导数,并提出了一个隐式差分格式。通过能量方法证明了此差分格式的稳定性和收敛性。最后,利用数值例子展示了该差分格式的有效性。
  • 工具箱:用MATLAB
    优质
    时间分数阶扩散波方程工具箱是一个基于MATLAB开发的软件包,专门设计用于解决含有时间分数阶导数的扩散和波动问题。该工具箱提供了多种高效的数值算法来求解这类复杂的偏微分方程,为科学研究与工程应用中的相关领域提供强大支持。 该工具箱提供了一组函数,用于在一个空间维度中为均匀或非均匀材料以及均匀或非均匀边界条件的时间分数阶扩散波方程的数值解。这些功能通过 TFODWE_test 脚本进行测试。详细信息可以在相关文档中找到。
  • 一种求一维反应(2011年)
    优质
    本文提出了一种求解一维对流扩散反应方程的有效隐式差分方法,并分析了该方法的稳定性与收敛性,验证了其高效性和准确性。 本段落提出了一种求解一维非稳态对流扩散反应方程的隐式差分格式方法。首先通过应用指数函数将模型方程转化为对流扩散方程,并为该转化后的方程构造了相应的差分格式。接下来,通过对系数进行处理并回代,得到了适用于原问题的隐式差分格式,其截断误差达到了O(τ^2 + h^2)级别。通过von Neumann稳定性分析证明此方法是无条件稳定的,并且由于该格式在每个时间层上仅涉及三个网格点,因此可以直接使用追赶法求解相应的差分方程。数值实验结果表明了算法的有效性。
  • .rar_Charef_charef _oustaloup_oustaloup 逼_view
    优质
    本资源包含Charef近似法和Oustaloup分数阶逼近等技术,适用于研究与应用分数阶系统建模、分析。 oustaloup分数阶近似方法与charef分数阶近似方法可以应用于分数阶控制与动态分析。
  • 有限(convection-diffusion2)
    优质
    本文探讨了利用有限差分法解决对流扩散方程的有效方法,分析了几种经典方案的优势与局限性,并提出改进策略以提高数值计算精度。 对流扩散方程的有限差分求解采用迎风格式进行空间离散,并使用向前差分格式(显示格式)处理时间离散。
  • C++一维上风格有限
    优质
    本研究运用C++编程实现了一维对流扩散方程的上风格式有限差分方法,探讨了该算法在不同条件下的数值稳定性与准确性。 求解一维对流扩散方程的有限差分方法(上风格式)C++编程实现。
  • Crank-Nicolson及效率ADI二维
    优质
    本文探讨了利用Crank-Nicolson格式和高效的时间分隔ADI(交替方向隐式)算法来解决二维对流扩散方程的问题,旨在提高计算精度与效率。 为了开发求解二维非线性对流扩散方程的有效数值方案,文中探讨了Crank-Nicholson方法与ADI(交替方向隐式)法在处理时间变化的非线性系统中的应用。这些算法在每个时间步上都达到了二阶精度,并结合迭代技术来解决非线性的挑战。通过选取两个测试案例进行分析,研究结果表明所提出的方案具有良好的效率和准确性,这从L2、L∞范数的研究中得到了验证。数值实验显示,交替方向隐式格式对于求解二维非线性对流扩散方程来说是高效且可靠的工具。这种方法可以广泛应用于工程学及物理学中的各类非线性问题的解决当中。
  • 有限体积
    优质
    本研究采用有限体积法探讨对流扩散方程,旨在精确模拟物质传输过程中的浓度分布。通过数值实验验证方法的有效性和准确性。 本段落介绍了一种使用有限体积法求解二维对流扩散方程的C++程序,并通过离散化网格最终计算出温度场。该程序在Visual Studio环境下运行。
  • Caputo型-MATLAB实现
    优质
    本文介绍了针对Caputo型对流扩散方程开发的一种高阶数值求解方法,并通过MATLAB进行实现与验证。该研究为复杂介质中的物质传输建模提供了有效的计算工具。 该函数是对流扩散方程的高阶数值格式。如果想使用这个程序,请参考以下三篇论文: 1. CP Li, RF Wu, HF Ding. Caputo 导数与 Caputo 型对流扩散方程 (I) 的高阶近似,应用和工业数学通信,2014 年,6(2),e-536:1-32。 2. JX Cao,CP Li,YQ Chen。Caputo 导数与 Caputo 型对流扩散方程的高阶近似 (II) ,分数阶微积分与应用分析,2015 年,18(3),735-761。 3. HF Li, JX Cao, CP Li。Caputo 导数和 Caputo 型对流扩散方程 (III) 的高阶近似。已提交。