Advertisement

基于EEG的情绪识别中的PNN应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究探讨了在情绪识别领域中使用PNN(概率神经网络)结合EEG信号的有效性,旨在提高不同情感状态下的分类准确率。 基于脑电图(EEG)的情绪识别技术通过分析大脑的电信号来判断用户的情绪状态,在人机交互系统中的应用越来越受到重视。由于情绪在人类社会互动中扮演着关键角色,尝试将情感融入到HCI系统的努力已经引起了广泛的关注和研究兴趣。这种自动化的情感识别使得这些系统更加智能化且便于使用。 本项研究表明了概率神经网络(PNN)用于分析观看音乐视频时由EEG信号引起的情绪变化的有效性,并利用公开的DEAP情绪数据库进行了验证。从四个频率带(theta、alpha、beta 和 gamma)中提取出的EEG功率值作为特征,结果显示较高频段(beta和gamma)在分类中的作用比低频段(theta和alpha)更为显著。 采用PNN进行分析后,在愉快程度(valence)上的平均准确率为81.21%,而在唤醒水平(arousal)上则为81.26%。这些结果与支持向量机(SVM)的结果相当,表明了该方法的有效性。此外,为了使技术更易于应用到实际场景中,研究者还提出了一种基于ReliefF算法的通道选择策略以减少所需电极数量;结果显示,在使用PNN时仅需9个(针对valence)和8个(针对arousal)最佳通道即可达到最大分类准确率的98%,相比之下SVM则需要更多的电极(分别为19个和14个)。 关键词包括情绪识别、脑电图EEG、概率神经网络PNN、ReliefF算法以及通道选择。引言部分首先强调了社会交互中情感的重要性,并回顾了自Picard于1995年提出“情感计算”概念以来的研究进展,指出自动化的必要性并讨论现实应用中的挑战。 文中提到使用PNN进行情绪识别的优势在于其简单、高效的特性,使其非常适合处理EEG数据。通过从四种不同频率带提取特征,并利用这些特征训练模型来实现对愉快程度和唤醒水平的分类任务。 研究中提出的通道选择算法旨在降低实际设备复杂性并提高用户体验,在减少电极数量的同时保持高精度的情绪识别能力。这为未来构建更加高效实用的情感识别系统提供了重要指导,能够促进该技术在更广泛应用场景中的应用和发展。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • EEGPNN
    优质
    本研究探讨了在情绪识别领域中使用PNN(概率神经网络)结合EEG信号的有效性,旨在提高不同情感状态下的分类准确率。 基于脑电图(EEG)的情绪识别技术通过分析大脑的电信号来判断用户的情绪状态,在人机交互系统中的应用越来越受到重视。由于情绪在人类社会互动中扮演着关键角色,尝试将情感融入到HCI系统的努力已经引起了广泛的关注和研究兴趣。这种自动化的情感识别使得这些系统更加智能化且便于使用。 本项研究表明了概率神经网络(PNN)用于分析观看音乐视频时由EEG信号引起的情绪变化的有效性,并利用公开的DEAP情绪数据库进行了验证。从四个频率带(theta、alpha、beta 和 gamma)中提取出的EEG功率值作为特征,结果显示较高频段(beta和gamma)在分类中的作用比低频段(theta和alpha)更为显著。 采用PNN进行分析后,在愉快程度(valence)上的平均准确率为81.21%,而在唤醒水平(arousal)上则为81.26%。这些结果与支持向量机(SVM)的结果相当,表明了该方法的有效性。此外,为了使技术更易于应用到实际场景中,研究者还提出了一种基于ReliefF算法的通道选择策略以减少所需电极数量;结果显示,在使用PNN时仅需9个(针对valence)和8个(针对arousal)最佳通道即可达到最大分类准确率的98%,相比之下SVM则需要更多的电极(分别为19个和14个)。 关键词包括情绪识别、脑电图EEG、概率神经网络PNN、ReliefF算法以及通道选择。引言部分首先强调了社会交互中情感的重要性,并回顾了自Picard于1995年提出“情感计算”概念以来的研究进展,指出自动化的必要性并讨论现实应用中的挑战。 文中提到使用PNN进行情绪识别的优势在于其简单、高效的特性,使其非常适合处理EEG数据。通过从四种不同频率带提取特征,并利用这些特征训练模型来实现对愉快程度和唤醒水平的分类任务。 研究中提出的通道选择算法旨在降低实际设备复杂性并提高用户体验,在减少电极数量的同时保持高精度的情绪识别能力。这为未来构建更加高效实用的情感识别系统提供了重要指导,能够促进该技术在更广泛应用场景中的应用和发展。
  • emotion-recognition:EEG源码
    优质
    本项目为一个基于EEG信号的情绪识别系统源代码。通过解析和分析脑电波数据,实现对人类情绪状态的自动检测与分类,适用于情感计算、人机交互等领域研究。 情绪识别项目使用脑电图(EEG)信号来进行情感分析。该项目利用了由伦敦玛丽皇后大学提供的DEAP数据集中的.EEG.mat文件。其目标是评估脑电信号在“情感计算”领域中作为不同情绪状态标识的潜力。 该数据集中包含了32名参与者的生理指标,每位参与者观看了40个一分钟长的音乐视频片段,并在此过程中记录了他们的生理信号反应。之后,这些参与者根据效价、唤醒度、喜好和支配性四个维度对每段观看体验进行了评分。在采集到的数据中包括了40种特征——32通道的EEG读数;另外还有8个外围指标如皮肤温度,呼吸幅度,眼电图(EOG),心电图(ECG)等数据记录,但这些额外信息在此项目研究范围内并不被使用。 所有脑电信号均按照10-20系统进行采集,并且在标准条件下对32通道的EEG进行了记录。对于来自DEAP数据库中的原始EEG信号,在后续的数据预处理阶段已经完成了一系列必要的步骤来确保数据的质量和准确性,以便于进一步的情绪识别研究工作开展。
  • 自动在DEAP数据集上EEG...
    优质
    本文探讨了在DEAP数据集上利用EEG信号进行自动情绪识别的研究,通过分析脑电波模式以实现对个体情绪状态的有效检测与分类。 DEAP数据集自动情感识别项目利用来自DEAP数据集的EEG信号,通过集成的一维CNN、LSTM以及2D和3D CNN,并结合带有LSTM的级联CNN来将情绪分类为四类。
  • EEG无监督深度特征学习
    优质
    本研究探讨了通过无监督深度学习技术从EEG信号中提取情绪相关特征的方法,以实现更准确、高效的情绪识别。 基于EEG的情绪识别采用无监督深度特征学习方法。
  • EEG:利AutoEncoder + CNN + RNN处理EEG数据及卷积
    优质
    本研究探讨了运用自编码器结合CNN与RNN模型分析EEG信号,以实现高效的情绪识别,创新性地融合多种深度学习架构来解析复杂的脑电波模式。 脑电情绪识别是HSE计算机科学学生项目的一部分,作者为Soboleva Natalia和Glazkova Ekaterina。准确分类脑电信号可以为医学研究提供解决方案,在早期阶段检测异常脑部行为以进行干预。 在本项研究中,我们从另一个角度看待这个问题——即情绪识别。为此,设计了一种结合卷积神经网络(CNN)与递归神经网络(RNN)的模型,并利用自动编码器来压缩高维数据。项目还包括了对EEG数据的处理以及使用AutoEncoder + CNN + RNN进行伪影预处理。 这里提到的“伪影”是指所有非脑源记录活动,可以分为两类:生理伪影(来自大脑其他部位或身体)和外部生理伪影(例如技术设备产生的干扰)。为了提取脑电图观察中的最重要特征,必须先对数据进行预处理。我们选择了开源Python软件来处理并可视化人类神经生理数据(包括EEG信号)。 在该领域内,目前有两种主要的方法可以用来处理EEG信号:小波变换和其它相关技术。
  • SVMEEG脑电波机器学习方法.rar
    优质
    本研究采用支持向量机(SVM)算法,通过分析EEG脑电信号来识别不同的情绪状态,提出了一种高效的情绪识别机器学习方法。 基于支持向量机(SVM)的机器学习方法用于脑电信号(EEG)的情绪识别的代码和数据。
  • 感分析:LSTM
    优质
    本研究探讨了利用长短期记忆网络(LSTM)模型对中文文本进行情感分析的有效性,专注于提高对复杂情绪表达的理解和分类精度。 字节跳动广告系统下的穿山甲平台正在大量招聘人才。 基于LSTM的中文情绪识别项目使用了Keras深度学习库来搭建LSTM网络,并对数据集进行六类情绪(其他、喜好、悲伤、厌恶、愤怒和高兴)的分类。数据集包含4万多条句子,来源于NLPCC Emotion Classification Challenge的数据以及微博筛选后的人工标注数据。 项目的结构如下: - data - train.json:原始训练数据文件 - stopWords.txt 项目由清华大学计算机系黄民烈副教授提供支持。
  • SVM方法
    优质
    本研究提出了一种基于支持向量机(SVM)的情绪识别方法,通过分析语音和面部表情数据,有效提升了情绪分类的准确率。 在现代人工智能领域,情绪识别是一项关键技术,能够帮助计算机理解人类的情感状态,并应用于人机交互、客户服务以及心理分析等多个场景。本段落将探讨如何利用支持向量机(SVM)进行情绪识别,特别是结合Dlib库的人脸检测技术和OpenCV的SVM模块。 Dlib是一个强大的C++库,提供了多种机器学习算法和高效的人脸检测模型。该人脸检测器基于HOG特征技术,可以快速准确地定位图像中的人脸区域。在情绪识别任务中,第一步是进行精确的人脸定位以便进一步分析面部表情变化。 一旦找到人脸,下一步通常是关注面部的关键特征点,包括眼睛、眉毛、鼻子和嘴巴等部位。Dlib提供了一个预训练模型来自动检测这些关键的68个特征点,并且它们包含了丰富的几何信息用于情绪识别任务中至关重要的细微表情差异。 接下来的任务是利用这些特征点提取与情绪相关的特性。这通常涉及计算各特征点间的距离及相对位置,以及分析随时间变化的趋势。例如,嘴角上扬可能表示高兴的情绪,而皱眉则可能是悲伤或愤怒的表现。将这些信息编码成向量后作为SVM分类器的输入。 OpenCV是一个流行的计算机视觉库,它不仅提供图像处理功能还内置了SVM模块。作为一种监督学习方法,SVM特别适合于小样本、高维数据集上的分类任务。在情绪识别中,可以通过收集不同情感状态下的面部图片并手动标注每张图对应的情绪类别来构建训练集。然后使用OpenCV的SVM接口训练一个模型以预测新的图像中相应的情感。 选择合适的参数(如核函数类型、惩罚参数C和核参数γ)对于优化SVM性能至关重要,通过交叉验证方法可以找到最佳设置从而提高模型泛化能力。完成训练后,该分类器能够实时应用于摄像头捕获的新图像上进行情绪识别。 在实际应用中为了获得更准确的结果,还可以结合声音、语言或文本等多模态数据以增强系统效能;此外深度学习技术如卷积神经网络(CNN)和循环神经网络(RNN)也表现出色,尽管它们需要更多计算资源与训练样本量来支持其高精度识别能力。 综上所述通过Dlib的人脸检测及特征点提取功能结合OpenCV的SVM模块能够构建一个实时的情绪识别系统。这项技术不仅在人工智能研究中具有重要价值,在日常生活中的应用前景也非常广泛,包括虚拟助手、自动驾驶汽车和教育辅导等领域。
  • EEG驾驶员状态贝叶斯网络模型
    优质
    本研究构建了基于脑电波(EEG)信号的贝叶斯网络模型,旨在准确识别驾驶员的情绪状态,以提升驾驶安全性和舒适度。 基于EEG的驾驶员情感状态识别的贝叶斯网络模型由范新安和毕路拯提出。该模型在考虑了驾驶员个性特征以及驾驶环境因素的基础上,利用贝叶斯网络建立了基于脑电信号(EEG)的驾驶员情感状态检测系统。首先对采集到的数据进行处理分析。
  • 实时系统
    优质
    实时情绪识别系统是一种先进的技术工具,能够通过分析语音、面部表情和文本等数据来源,准确快速地辨识个人的情绪状态。该系统在客户服务、心理健康等领域有着广泛的应用前景。 项目名称:情感识别 描述: 我们的人脸情绪参差不齐,因此我们需要证明自己存在这些情绪的可能性。那么什么是情感识别呢?情感识别是一种软件技术,它允许程序通过高级图像处理来“读取”人脸上的情感表达。 公司一直在尝试将复杂的算法与过去十年中出现的图像处理技术相结合,以便更多地了解人脸的图像或视频所传达的情绪信息。这不仅包括单一情绪的表现形式,还包括一张脸可能同时表现出多种情感的可能性。 装置: 使用以下命令安装依赖项: ```pip install -r requirements.txt``` 用法说明: 该程序将创建一个窗口来显示网络摄像头的画面。