Advertisement

基于电流模式的零电压软开关并联谐振推挽DC/DC变换器(2010年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文提出了一种基于电流模式控制的零电压软开关并联谐振推挽DC/DC变换器,适用于高效、低损耗的电力电子应用。通过优化电路设计,实现了器件在零电压条件下切换,显著提升了系统效率与可靠性。该变换器特别适合于高压大功率场合的应用需求。 本段落分析了电流型软开关并联谐振推挽直流-直流变换器的基本特性,并给出了在一个开关周期内不同时段通过开关管的电流与电压表示式及临界周期的概念,研究了开关周期与谐振电压之间的非线性关系。实验电路已经制作完成,模型也进行了仿真和验证。结果显示,该变换器具有良好的零电压软开关特性和负载特性、较高的功率转换效率以及较低的电磁辐射。只需在小范围内调整开关频率即可获得性能优良的稳压效果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DC/DC2010
    优质
    本文提出了一种基于电流模式控制的零电压软开关并联谐振推挽DC/DC变换器,适用于高效、低损耗的电力电子应用。通过优化电路设计,实现了器件在零电压条件下切换,显著提升了系统效率与可靠性。该变换器特别适合于高压大功率场合的应用需求。 本段落分析了电流型软开关并联谐振推挽直流-直流变换器的基本特性,并给出了在一个开关周期内不同时段通过开关管的电流与电压表示式及临界周期的概念,研究了开关周期与谐振电压之间的非线性关系。实验电路已经制作完成,模型也进行了仿真和验证。结果显示,该变换器具有良好的零电压软开关特性和负载特性、较高的功率转换效率以及较低的电磁辐射。只需在小范围内调整开关频率即可获得性能优良的稳压效果。
  • 研究
    优质
    本研究专注于并联推挽式谐振变换器,深入探讨其工作原理、效率优化及应用前景,旨在推动高频电力电子技术的发展。 ### 并联推挽式谐振变换器研究 #### 一、引言 随着现代通信技术和工业自动化水平的不断提高,对高效、稳定的电源系统需求日益增长。为了满足这些需求,研究人员不断探索新的电源转换技术。其中,谐振软开关技术因其能够显著提升电源转换效率而在开关电源设计中得到广泛应用。本段落主要探讨了一种新型的并联推挽式谐振变换器,该变换器采用了恒定脉宽调制(CPWM)技术,旨在解决传统谐振变换器中存在的问题,如输入电压范围窄和软开关实现受限于负载大小等问题。 #### 二、谐振变换器背景与种类 ##### 2.1 谐振变换器概述 谐振变换器是一种利用谐振原理来实现软开关操作的电源转换技术。通过在电路中引入谐振元件(如电感L和电容C),使得开关器件可以在零电压或零电流条件下导通或关断,从而大大降低了开关损耗,提高了整体转换效率。 ##### 2.2 谐振变换器分类 根据不同的工作原理和结构特点,谐振变换器可以分为多种类型: - **串联谐振变换器**:采用串联谐振电路,适用于负载变化不大的场合。 - **并联谐振变换器**:采用并联谐振电路,适用于负载变化较大的场合。 - **推挽式谐振变换器**:结合了推挽电路与谐振电路的特点,具有较好的软开关性能。 #### 三、推挽电路及其改进 ##### 3.1 传统推挽电路 推挽电路是一种常用的DC-DC转换电路,它利用两个反向连接的开关管交替工作来实现电压变换。然而,在高频工作条件下,传统的推挽电路难以实现软开关操作,导致效率降低。 ##### 3.2 改进方案 为了解决上述问题,本段落提出了一种基于Buck电流馈电的交错并联推挽式谐振变换器。这种新型变换器采用了Buck电流馈电的方式,将电路分为前后两级:前端采用Buck电路进行电流调节,后端采用推挽式谐振电路进行电压变换。这种方式不仅可以降低开关管的应力,还能简化控制系统的设计,降低成本。 #### 四、交错并联推挽式谐振变换器原理 ##### 4.1 工作原理 交错并联推挽式谐振变换器的主要特点是采用了交错并联技术,即在推挽电路的基础上增加了一个并联支路。通过合理调整电路参数,该变换器可以在保持较高效率的同时实现大功率传输。具体来说,它利用了Buck电路的电流调节能力与推挽电路的谐振特性,实现了软开关操作。 ##### 4.2 控制策略 为了确保电路稳定可靠地工作,本段落采用了一种基于恒定脉宽调制(CPWM)的控制策略。通过精确控制开关管的导通时间,可以有效地抑制开关过程中的损耗,进一步提高了电路的整体效率。 #### 五、仿真与实验验证 ##### 5.1 仿真分析 为了验证该电路设计的有效性,本段落使用了Simetrix仿真软件对该变换器进行了详细的仿真分析。结果表明,通过优化电路参数和控制策略,可以有效地实现软开关操作,并且在宽输入电压范围内保持较高的转换效率。 ##### 5.2 实验验证 除了理论分析和仿真验证外,本段落还搭建了实验平台对实际样机进行了测试。通过对比实验数据与仿真结果,进一步验证了该变换器在实际应用中的可行性和优越性。 #### 六、结论 本段落提出了一种新型的并联推挽式谐振变换器,结合了Buck电流馈电和交错并联技术,不仅有效解决了传统谐振变换器存在的问题,并且在理论上和实验上证明其在提高转换效率方面的优势。未来的研究将进一步探索如何在此基础上进一步优化电路结构和控制策略,以适应更多应用场景的需求。
  • 仿真DC/DC设计
    优质
    本研究聚焦于通过仿真技术优化并联谐振型直流-直流(DC/DC)转换器的设计,旨在提升其效率与稳定性。 本段落涉及一篇12000字的论文,查重率需控制在25%以下,并包含一个基于MATLAB的仿真模型及相应的结果分析。 该研究关注的是并联谐振DC/DC变换器的设计与实现。逆变器采用PWM(脉宽调制)技术驱动单相全桥IGBT模块(即H桥结构)。栅极侧滤波器采用了经典的LCL拓扑,其中电感均匀分布在线路和中性支路之间。 在仿真模型的构建过程中,简化了整流与滤波电路环节,并用直流电压源进行替代。逆变部分采用双桥并联结构(但在模型内以单个桥式模块表示),并且IGBT参数基于最新一代原型设定。负载则被设计为RLC并联谐振类型。 控制系统由五个Simulink子系统构成,分别是最大功率点跟踪(MPPT)控制器、直流电压稳压器、电流调节器、PLL和测量以及PWM信号发生器。其中MPPT控制器采用“扰动与观察”技术来自动调整逆变直流稳压器的VDC参考值,以确保从光伏串中提取的最大功率输出。 具体来说: - MPPT系统通过改变直流电压设定点(VDC),使系统能够获取最大可能的电能; - 直流电压控制器用于确定维持有功电流(Id)所需的参数设置; - 电流调节器则负责根据当前需求调整逆变器参考电压,同时无功电流(Iq)在此模型中被设为零以简化分析; - PLL和测量模块确保系统能够准确同步并获取必要的信号数据; - PWM发生器采用双极性调制方式产生触发信号至IGBT。
  • 源技术中Boost DC/DC研究
    优质
    本研究聚焦于电源技术中推挽式Boost DC/DC变换器的设计与优化,探讨其在高效功率转换中的应用及改进策略。 随着电力电子技术的快速发展,双向DC/DC 变换器的应用越来越广泛。本段落提出了一种在双向DC/DC 变换器中使用的推挽式Boost DC/DC 变换器,并对其工作原理进行了全面分析以及阐述了其缺点,同时利用PSPICE 仿真软件对其进行建模仿真。 电力电子技术是一门研究电能变换原理与变换装置的综合性学科,在电力行业中有着广泛的应用。该领域的研究内容十分丰富,包括但不限于电力半导体器件、磁性元件、电力电子电路、集成控制电路以及由这些元件和电路组成的电力变换装置。其中,电力变换技术是开关电源的基础和核心部分。由于生产技术的进步,双向DC/DC 变换器的使用也越来越广泛。
  • 高频DC-DC路中设计.pdf
    优质
    本文档探讨了高频变压器在推挽式DC-DC变换器电路中设计的关键技术与应用实践,为提高电源效率和稳定性提供了理论依据和技术支持。 推挽DC-DC变换电路中高频变压器的设计探讨了在该类型的电力电子转换器中设计高频变压器的关键技术和考虑因素。文中分析了如何优化磁芯材料选择、绕组布局以及磁通密度等,以提高效率并减小体积和成本。此外还讨论了一些常见的设计挑战及解决方案,旨在帮助工程师更好地理解和应用此类变换电路中的核心组件——高频变压器的原理与实践技巧。
  • UC3846正激DC-DC设计
    优质
    本设计采用UC3846芯片,构建了一种高效的推挽式正激型DC-DC变换器,适用于高压输入低压输出的应用场景,具有高效率、稳定性强的特点。 本段落设计了一款基于UC3846的推挽正激DC—DC变换器,并分析了其电路控制原理。实验结果显示,该变换器克服了传统推挽电路的不足,具有高效率、功率开关管电压尖峰小以及快速动态响应等优点。
  • 非对称半桥结构DC/DC
    优质
    本研究提出了一种基于非对称半桥结构的新型DC/DC变换器设计,实现了零电压开关操作,显著降低了开关损耗并提升了效率。 为了防止输出二极管的误操作和损坏,必须限制由变压器漏感及二极管寄生参数引起的过电压现象。通常,在二极管两端添加箝位与吸收电路可以有效控制这种过电压问题;例如,常用的方法是在二极管两端加入电阻-电容-二极管(RCD)吸收电路以抑制过电压。然而,这种方法最大的缺点在于大部分能量会被消耗在电阻上,从而显著降低变换器的效率。此外,由于低频波动的存在使得消除这种过电压变得困难。
  • 高频DC-DC设计方案
    优质
    本项目专注于高频推挽式DC-DC变换器的设计与优化,旨在提高电力电子设备的能量转换效率及稳定性。通过创新设计,力求实现高效、可靠且成本效益高的电源解决方案。 本段落提出了一种高频推挽DC-DC变换器的设计方案,以满足车载用电设备的需求。该设计方案包括采用推挽逆变、高频变压和全桥整流技术来实现24V直流输入至220V直流输出的转换,并且额定功率为600W。通过详细分析推挽逆变的工作原理并运用AP法,文中还探讨了设计过程中的关键注意事项。实验结果表明该设计方案是车载DC-DC变换器的理想选择。
  • 半桥LLCDC/DC
    优质
    简介:半桥LLC谐振DC/DC变换器是一种高效的电力电子电路,通过利用谐振原理减少开关损耗,广泛应用于各种电源系统中。 半桥LLC谐振型直流变换器采用PLECS 4.5.6软件版本。
  • Buck-Boost双向DC-DC研究.rar
    优质
    本研究探讨了零电流模式下的Buck-Boost双向DC-DC变换器的工作原理及性能优化,旨在提高电力电子系统的效率与可靠性。 本段落研究了一种零电流Buck/Boost双向DC/DC变换器,针对中大功率双向DC/DC变换器软开关难以实现的问题,基于耦合电感设计了一种无源低损的软开关方案,实现了开关管在零电流条件下开通并回馈缓冲能量。详细分析了该变换器的工作原理,并设计了主要元件参数,推导出主要开关器件的开通损耗估算表达式。实验结果显示,这种零电流开通效果良好,且缓冲电感能量回收明显,在60 kW功率范围内效率超过90%。