Advertisement

利用MATLAB和Simulink进行路径追踪:适用于自动停车车辆的Simulink模型-_MATLAB项目

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本MATLAB项目提供了一个Simulink模型,用于开发自动驾驶汽车中的路径追踪算法,特别针对自动停车功能优化设计。 此条目包含一个关于“自主机器人的路径规划和导航”的Simulink模型的视频。该演示展示了如何模拟一辆自动停车汽车,其中仅包括三个组件:路径、车辆模型以及路径跟随算法。车辆模型是根据自行车运动学方程来实现的,而路径跟随算法则使用了Robotics System Toolbox中的Pure Pursuit模块。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLABSimulinkSimulink-_MATLAB
    优质
    本MATLAB项目提供了一个Simulink模型,用于开发自动驾驶汽车中的路径追踪算法,特别针对自动停车功能优化设计。 此条目包含一个关于“自主机器人的路径规划和导航”的Simulink模型的视频。该演示展示了如何模拟一辆自动停车汽车,其中仅包括三个组件:路径、车辆模型以及路径跟随算法。车辆模型是根据自行车运动学方程来实现的,而路径跟随算法则使用了Robotics System Toolbox中的Pure Pursuit模块。
  • Simulink激光雷达仿真RAR文件
    优质
    本RAR文件包含使用Simulink开发的激光雷达车辆追踪仿真模型,适用于自动驾驶系统中目标跟踪算法的研究与测试。 本示例展示了如何利用安装在ego车辆顶部的激光雷达传感器的数据来追踪其他车辆。由于激光雷达具有高分辨率特性,其每次扫描都会生成大量的点数据,通常称为点云。该示例介绍了Simulink中用于处理这些点云并进行目标跟踪的工作流程。 使用的激光雷达数据是从高速公路驾驶场景中记录下来的。通过联合概率数据关联(JPDA)追踪器和交互式多模型(IMM)方法可以实现车辆的追踪功能。此例子是基于“使用激光雷达的车辆跟踪:从点云到跟踪列表”的MATLAB示例进行扩展的。 在本案例里,所用的数据文件会与源代码一起提供,并且需要下载至当前的工作目录中。如果选择将这些数据存储于其他位置,则请根据实际情况调整路径信息。 值得注意的是,激光雷达和图像数据读取器模块是通过Simulink中的MATLAB系统模块来实现的;它们的具体功能由相应的帮助类定义。这两个读取器从MAT文件中提取记录的数据,并分别输出参考图象以及点云的位置坐标。
  • 14 Simulink:应力学Matlab开发
    优质
    本项目介绍如何使用MATLAB和Simulink创建自定义车辆的动力学模型,并进行仿真分析,适用于汽车工程领域的研究与教学。 用于地面车辆横向和行驶动力学的Simulink模型。
  • Matlab-Simulink 差速小
    优质
    本项目基于Matlab-Simulink平台,设计并实现了一种差速驱动的小车路径跟踪系统。通过算法优化,使小车能够精确地跟随预设路线行驶。 双差动单元的四轮差动小车循路控制。
  • SimulinkMPC汽轨迹
    优质
    本项目介绍在Simulink环境中应用模型预测控制(MPC)技术实现汽车精准轨迹跟踪的方法,通过仿真验证算法的有效性。 关于自动驾驶相关的MPC仿真算法,我设计了一份详细的资料。
  • 四轮转向汽MPCSimulink-Simscape仿真,无需Carsim,基力学
    优质
    本项目介绍了一种四轮转向汽车模型的MPC路径跟踪Simulink-Simscape仿真方法,利用车辆动力学模型实现精确控制,无需依赖Carsim软件。 四轮转向汽车模型预测控制(MPC)路径跟踪采用Simulink-Simscape仿真,无需使用Carsim。基于车辆动力学模型设计的MPC包含纵向PID控制,并支持在平坦路面、颠簸路面以及外形变化下的应用。该系统利用魔术公式轮胎模型进行建模和分析。需要说明的是,本项目要求MATLAB版本为2022a及以上版本。
  • 四轮转向汽MPCSimulink-Simscape仿真,无需Carsim,基力学...
    优质
    本文介绍了一种利用MATLAB Simulink和Simscape进行四轮转向汽车模型的MPC路径跟踪仿真的方法,该过程直接建立在精确的车辆动力学模型之上,避免了使用第三方软件如Carsim的需求。通过优化控制算法,模拟更接近真实的驾驶行为,并提高自动驾驶技术中的路径跟随精度。 四轮转向汽车模型预测控制(MPC)路径跟踪技术是一种先进的车辆控制系统设计方法。该技术通过使用预测控制算法来优化车辆在各种路面条件下的路径跟踪性能。 在实现过程中,四轮转向系统的控制逻辑与传统的两轮转向系统不同:它可以独立或协同地调整后轮的转向角度,从而提高低速时的机动性和高速时的稳定性。模型预测控制(MPC)是一种先进的控制策略,它基于车辆动力学模型对未来的车辆行为进行预测,并在每个控制周期内优化输入以实现最优效果。由于能处理多输入和多输出问题,MPC非常适合四轮转向系统的复杂需求。 本段落中使用了魔术公式轮胎模型来描述轮胎与路面间的摩擦力特性,该模型能够准确地模拟不同路面条件下轮胎的性能表现。仿真环境利用Simulink和Simscape工具搭建,并不依赖于Carsim软件,因为这些MATLAB内置工具足以支持复杂的车辆建模和有效仿真实验。 此外,系统中还设计了纵向PID控制器来维持行驶过程中的速度稳定性。通过比例(P)、积分(I)及微分(D)三个参数的调节实现精确控制。保持稳定的速度对于路径跟踪精度至关重要。 该控制系统能够适应平坦路面、颠簸路面以及车辆外形变化带来的影响,具备良好的环境适应性和鲁棒性,在不同驾驶条件下都能保证优秀的路径跟踪性能。 为了确保高精度仿真和复杂系统设计的有效支持,建议使用2022a或更高版本的MATLAB软件进行开发工作。总体而言,四轮转向汽车模型预测控制技术结合了先进的控制策略与仿真实验方法,能够在多种路面条件中保持车辆稳定性和路径跟踪准确性,并有望显著提升未来驾驶的安全性及性能水平。
  • MPC控制.zip
    优质
    本资料包包含针对MPC(模型预测控制)技术在车辆路径追踪控制系统中的应用研究与实现方案,适用于自动驾驶和智能交通系统开发。 本代码为博文配套代码,由博主上传。代码包含了无人驾驶车辆变道的仿真及根据车辆运动学模型实现模型预测控制的仿真效果。解压后从Change_line.m文件直接运行即可,MATLAB版本为2017a,不同版本注释可能出现乱码,但不影响运行效果。
  • 由度Simulink
    优质
    本作品为一款在Simulink环境下开发的七自由度车辆动力学模型,旨在模拟复杂驾驶条件下的车辆行为,适用于自动驾驶算法测试与验证。 使用Simulink搭建整车七自由度模型,包括垂向、俯仰和侧倾运动。