Advertisement

基于GaN HEMT Doherty的宽带功率放大器——程知群

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
程知群专注于研究基于GaN HEMT技术的Doherty宽带功率放大器,致力于提升无线通信系统的效率与性能。 本段落探讨了宽带Doherty功率放大器设计的相关问题,并提出了一种新型负载调制网络以拓宽其带宽。采用CREESemiconductor公司的GaNHEMT功放管CGH40010F,应用该新方案设计并制造了一款宽带Doherty功率放大器进行了测试。主放大器在AB类工作状态下,直流偏置为Vds=28V和Vgs=-2.7V;辅助放大器则在C类下运行,其直流偏置设定为Vds=28V,Vgs=-5.5V。 实验结果显示,在1.5到2.3GHz的频段范围内(带宽达800MHz),该新型宽带Doherty功率放大器展示了良好的性能:饱和输出功率范围在42.66至44.39dBm之间,效率则介于52%和66%,当回退到6dB时,效率保持在46%-50%。此外,其相对带宽达到了42.1%且增益平坦。这些测试结果验证了该设计方案的可行性。 关键词:Doherty功率放大器;宽带;负载调制网络

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GaN HEMT Doherty——
    优质
    程知群专注于研究基于GaN HEMT技术的Doherty宽带功率放大器,致力于提升无线通信系统的效率与性能。 本段落探讨了宽带Doherty功率放大器设计的相关问题,并提出了一种新型负载调制网络以拓宽其带宽。采用CREESemiconductor公司的GaNHEMT功放管CGH40010F,应用该新方案设计并制造了一款宽带Doherty功率放大器进行了测试。主放大器在AB类工作状态下,直流偏置为Vds=28V和Vgs=-2.7V;辅助放大器则在C类下运行,其直流偏置设定为Vds=28V,Vgs=-5.5V。 实验结果显示,在1.5到2.3GHz的频段范围内(带宽达800MHz),该新型宽带Doherty功率放大器展示了良好的性能:饱和输出功率范围在42.66至44.39dBm之间,效率则介于52%和66%,当回退到6dB时,效率保持在46%-50%。此外,其相对带宽达到了42.1%且增益平坦。这些测试结果验证了该设计方案的可行性。 关键词:Doherty功率放大器;宽带;负载调制网络
  • 平衡结构Doherty射频
    优质
    本研究设计了一种基于平衡结构的宽带Doherty射频功率放大器,旨在提升无线通信系统的效率与性能。通过优化电路架构,实现了宽频率范围内的高效能量转换和低功耗运行,为5G及未来移动通信技术提供了有力支持。 为了满足未来通信系统对多波段多模式射频功率放大器的需求,有必要改进传统的Doherty结构。基于传统Doherty架构,通过分析其输出合路结构的阻抗变换比,阐明了该比例对于带宽的影响,并采用平衡式设计来扩展合路带宽。最终,利用CREE公司的Ga N功放管开发了一款工作在1.85—2.65GHz频段的Doherty功率放大器,在整个频率范围内输出功率回退为5~6dB时,漏极效率超过38%,最大输出功率大于44dBm,并且整体合路增益约为10dB。这证明了所采用合路结构的有效性。
  • ADS双输入混合Doherty-Outphasing设计(2021.02 MTT)
    优质
    本文提出了一种结合Doherty与Outphasing技术的新型双输入宽带功率放大器设计,采用先进的ADS软件进行仿真优化,于2021年2月在MTT会议上发表。 在输出功率为43dBm的情况下,在1.4GHz到2.5GHz的频率范围内,效率可达60%至70%,增益范围是7.1-10.6dB。右图展示了在这个频段内效率随输出功率变化的情况,显示饱和效率介于60%-78%之间,而饱和功率则位于42dBm到44dBm区间(默认以43dBm为饱和点进行解释)。当回退3dB时的效率范围是60%-73%,若进一步回退至6dB,则效率会降至51%-60%。
  • RF
    优质
    宽带RF功率放大器是一种电子设备,用于增强无线电信号的功率,特别适用于需要宽频带操作和高效信号放大的通信系统中。 本段落分析了当前几种主要的高功率放大器的预失真结构和实现方式。
  • GaN材料高效Doherty射频研究与设计
    优质
    本项目专注于基于氮化镓(GaN)材料的高效Doherty射频功率放大器的研究与开发,致力于提升无线通信系统的性能。 GaN材料高效率Doherty射频功率放大器的研究与设计
  • GaNS波段设计
    优质
    本研究专注于开发一种应用于S频段通信系统的高性能、宽带GaN放大器。通过优化电路结构和材料特性,实现了高效率与宽工作带宽的结合,为无线通信技术的进步提供了新的解决方案。 摘要:氮化镓功率管因其宽带隙、高击穿电场等特点,在带宽与效率方面表现出色。为了探究GaN 功率放大器的特性,本研究利用Agilent ADS 等仿真软件进行了电路设计,并成功开发出一款S 波段宽带GaN 功率放大器。详细介绍了电路仿真的过程,并对所设计的宽带放大器进行测试,结果显示该放大器在S 波段内可实现超过44 dBm 的功率输出,证明了其具有宽带工作的能力。 新一代半导体功率器件主要包括SiC 场效应晶体管和GaN 高电子迁移率晶体管。与传统的硅双极型功率晶体管及第二代GaAs 场效晶体管相比,这些新型材料的器件具备显著优势。
  • ADSDoherty仿真与版图设计
    优质
    本研究聚焦于基于ADS软件的宽带Doherty放大器仿真和版图设计,旨在优化其性能,实现高效功率放大。通过详细的电路仿真和布局优化,探索提高增益、效率及带宽的方法。 设计指标如下:频率范围为2.3-3.5GHz;带宽1.2GHz;饱和增益8-11.7dB;回退增益设定为11dB;饱和效率超过60%;回退效率高于40%。 参考的设计流程请参阅相关文献。
  • 三级Doherty研究
    优质
    本文深入探讨了三级Doherty功率放大器的设计与优化,分析其在无线通信中的应用优势及面临的挑战。 为了降低基站能耗并简化散热设计,基于三级Doherty理论(该理论能有效提高功放效率),我们研制了一款平均输出功率为50W的FDD-LTE基站三级Doherty功率放大器,并将其与数字预失真系统结合,在确保线性度的同时,显著提高了功放在高功率回退范围内的效率。实际测试结果表明,该设计下的LTE信号增益约为12.5dB,平均输出功率处的功率附加效率(PAE)保持在40%左右,并且在整个9dB回退范围内,其功率附加效率曲线相对平坦。此外,在数字预失真系统校正后,ACLR达到了-62dBc,满足现代功放高功率回退、高效率和高线性度的设计需求。
  • 高效Doherty研发
    优质
    本项目致力于研发高效的Doherty功率放大器,旨在提高无线通信系统的效率和性能。通过优化设计和新材料的应用,力求实现更高能效与更优线性度,以满足未来通信技术的需求。 ### 高效率Doherty功率放大器的研制 #### 一、引言 功率放大器(Power Amplifier, PA)作为无线通信系统中的核心组件,在雷达、导航、卫星通信和个人无线通信等领域扮演着至关重要的角色。随着现代调制技术的发展,如802.11标准和高清电视(High Definition Television, HDTV),以及第四代移动通信(4G)等均采用了具有较高峰值功率比(Peak-to-Average Power Ratio, PAPR)的调制信号。这些信号的特点导致传统功率放大器面临效率降低的问题,因为它们通常在恒定包络或低PAPR信号下表现出较高的效率。 #### 二、高效率功率放大器技术概述 为了应对高峰值比信号带来的挑战,各种高效率功率放大器技术应运而生,其中包括Doherty放大器技术。本节将简要介绍几种高效率放大器技术,并重点讨论Doherty放大器的工作原理及其优势。 - **D类放大器**:利用开关模式操作可以实现非常高的效率,但线性度较差,适用于某些特定应用场景。 - **E类放大器**:进一步优化了D类放大器的性能,提高了效率并改善了谐波控制。 - **Harmonic Tuning**:通过调整谐波来提升效率,适用于某些特定调制格式。 - **Load Modulation**:通过动态改变负载阻抗提高效率,在非线性区域内尤其有效。 #### 三、Doherty功率放大器技术详解 ##### 3.1 原理与结构 Doherty放大器是一种非线性功率放大器,它由一个主放大器(Main Amplifier, MA)和一个辅助放大器(Peaking Amplifier, PA)组成。在低功率输入时,只有主放大器工作,提供线性增益;当输入功率增加到一定水平时,辅助放大器开始工作,并通过非线性压缩补偿主放大器的增益下降,从而实现高效的功率传输。 ##### 3.2 特性分析 - **高效工作范围**:Doherty放大器能够在广泛的输入功率范围内保持较高的效率。 - **宽带性能**:相较于其他放大器技术,Doherty放大器具有更好的宽带性能。 - **负载牵引**:利用有源负载牵引技术可以进一步优化Doherty放大器的性能。 - **线性化技术**:为了提高线性度,常采用预失真(Predistortion, PD)技术与Doherty放大器结合使用。 #### 四、Doherty放大器设计与仿真 本部分介绍了如何利用Agilent公司的先进设计系统(Advanced Design System, ADS)和Freescale公司的功放经验模型进行Doherty放大器的设计。 1. **设计流程**: - **负载牵引理论**:通过负载牵引理论确定最佳负载条件。 - **元件选择**:根据性能需求选择合适的放大器元件。 - **参数优化**:通过仿真调整参数以达到最优性能。 - **验证测试**:完成实物制作后进行测试验证。 2. **软件工具**: - **ADS**:用于电路设计和仿真的高级工具。 - **MATLAB**:用于预失真算法开发和仿真结果分析。 3. **线性化技术**: - **预失真技术**:通过在信号进入放大器之前对其进行处理,抵消放大器引入的非线性失真。 #### 五、结论与展望 通过上述研究,成功设计出一种适合较高峰值功率比信号的高效率和线性的Doherty功率放大器。该放大器不仅提高了能源利用率,降低了能耗,并为未来无线通信系统的高性能需求提供了有力支持。未来的研究方向包括进一步优化放大器性能、探索更先进的线性化技术和扩展工作频段等。 随着无线通信技术的进步和发展,对高效率功率放大器的需求将持续增长。Doherty放大器作为一种高效且灵活的技术方案,在未来的通信系统中将发挥重要作用。