Advertisement

基于UPML的3D FDTD代码在微带支线耦合器分析中的应用:利用3D FDTD与UPML进行微带支线耦合器分析。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本文介绍了基于UPML的三维FDTD代码在微带支线耦合器分析中的应用,通过该方法有效提高了计算效率和精度。 使用UPML的三维FDTD方法用于计算平面支线耦合器的散射系数S_{11}、S_{21}、S_{31} 和 S_{41},参考文献为D. Sheen, S. Ali, M. Abouzahra和J. Kong 的“应用三维有限差分时域分析法平面微带电路”,发表于IEEE Trans. on Microwave Theory and Techniques。当前代码包含以下改进:1) 使用UPML代替Mur ABCs;2)使用真正的金属(铜)作为贴片导体材料,而不是PEC;3) 在滤波器传输微带线的末端施加匹配负载以防止物理反射;4)不在Ez源平面施加“磁墙”或“电墙”条件;5) 使用具有损耗特性的实际介质属性(Duroid)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • UPML3D FDTD线3D FDTDUPML线
    优质
    本文介绍了基于UPML的三维FDTD代码在微带支线耦合器分析中的应用,通过该方法有效提高了计算效率和精度。 使用UPML的三维FDTD方法用于计算平面支线耦合器的散射系数S_{11}、S_{21}、S_{31} 和 S_{41},参考文献为D. Sheen, S. Ali, M. Abouzahra和J. Kong 的“应用三维有限差分时域分析法平面微带电路”,发表于IEEE Trans. on Microwave Theory and Techniques。当前代码包含以下改进:1) 使用UPML代替Mur ABCs;2)使用真正的金属(铜)作为贴片导体材料,而不是PEC;3) 在滤波器传输微带线的末端施加匹配负载以防止物理反射;4)不在Ez源平面施加“磁墙”或“电墙”条件;5) 使用具有损耗特性的实际介质属性(Duroid)。
  • UPML3D FDTD低通滤波3D FDTDUPML低通滤波
    优质
    本研究采用三维FDTD方法结合UPML技术,对微带低通滤波器进行了详细电磁特性分析。通过精确建模和高效数值仿真,优化了滤波器性能参数。 FDTD 3D with UPML 用于计算平面微带低通滤波器的散射系数 S_{11} 和 S_{21}。该方法基于 D. Sheen、S. Ali、M. Abouzahra、J. Kong 的原始论文“Application of三维有限差分时域法分析平面微带电路”。当前代码包括一些改进:1) 使用 UPML 代替 Mur ABCs;2)使用真正的金属(铜)作为贴片导体材料,而非理想电导体PEC;3) 在滤波器传输微带线的末端施加匹配负载以防止物理反射;4)不在Ez源平面应用“磁墙”或“电墙”条件。
  • 3D FDTD线馈矩形天线-MATLAB实现
    优质
    本研究采用三维时域有限差分法(3D FDTD)对微带线馈矩形天线进行仿真分析,并使用MATLAB软件实现,探讨其电磁性能。 FDTD程序用于模拟超宽带脉冲通过线馈矩形天线的传播,并计算微带结构的回波损耗参数。
  • ADS仿真线通滤波
    优质
    本研究通过ADS仿真软件设计了一种平行耦合微带线结构的带通滤波器,优化了其性能参数,实现了宽带高选择性的信号传输。 【ADS仿真平行耦合微带线带通滤波器】是一种在微波工程领域广泛应用的信号调理技术。本段落详细介绍了如何使用Advanced Design System(ADS)软件设计这种滤波器,旨在实现高效的微波电路系统设计,降低工作量并提高效率。 耦合微带线是滤波器设计的基础,它是两条无屏蔽的传输线紧密相邻,由于电磁场相互作用而产生的功率耦合。这种结构等效于串联电感和并联电容的小段。影响滤波效果的因素包括微带线特性阻抗、耦合部分长度、宽度以及线间距等。通过级联多个这样的单元可以构建出具有陡峭通带到阻带过渡的滤波器。 设计步骤如下: 1. **低通原型设计**:根据给定参数(如中心频率和带宽)将带通滤波器转化为低通原型,确定归一化的设计参数。 2. **计算特性阻抗**:基于上述归一化参数及带宽数据来计算耦合传输线的奇模与偶模特性的电阻值。 3. **微带线几何尺寸计算**:根据已知的偶、奇模式阻抗,结合实际电路板材料属性(如介质厚度、相对介电常数和金属层厚度)进行精确尺寸设计。 4. **仿真及优化过程**:在ADS软件中搭建该滤波器模型,并输入相应参数以执行S参数模拟。如果初次结果不符合预期,则通过Optim工具调整耦合线的宽度,间距以及长度等关键参数直至满足性能指标要求为止。 文中提供了一个具体的设计案例,其中中心频率设定为2.6GHz、带宽为200MHz、通带内衰减至少40dB且纹波限制在3 dB以内。设计中采用5级耦合微带线结构并选择切比雪夫低通原型作为基础模型(具有3dB的纹波)。经过多次仿真及参数调整,最终实现了符合要求的设计目标,在2.8GHz和2.4GHz频点处衰减均达到了预期值。 通过利用ADS软件提供的模拟与优化功能,设计人员能够精确调控滤波器性能特性。这种方法不仅简化了整个开发流程,并提高了设计方案的准确性,对于微波电路系统应用具有重要的实用价值。
  • ADS四阶线通滤波
    优质
    本研究设计了一种新颖的基于ADS软件的四阶耦合微带线带通滤波器,通过优化参数实现紧凑结构与高性能指标。 本资源提供ADS仿真的四阶耦合微带线带通滤波器的中心频率为2.45GHz。
  • AWR仿真线
    优质
    本文探讨了在AWR软件中模拟分支线耦合器的方法与技巧,分析其设计特点和性能参数,并提供实际应用案例。 ### AWR 仿真分支线定向耦合器设计与分析 #### 一、设计要求 - **中心频率**:925MHz - **基材**:FR4,介电常数为4.4,损耗正切0.02 - **高度**:1.6mm - **微带金属厚度**:T = 0.035mm - **输入输出阻抗**:100Ω - **扫频范围**:6GHz - 12GHz #### 二、理论分析 ##### 2.1 分支线定向耦合器简介 分支线定向耦合器是一种常见的四端口微波无源器件,主要用于信号的分配与合成。它具有良好的方向性和隔离特性。传统的分支线耦合器通常由四条长度为四分之一波长的传输线组成,在中心频率附近实现90°相移。 根据微带传输线理论,随着阻抗值增加,传输线宽度会逐渐变窄。当所有端口均匹配时: 1. **直通端**:信号通过路径 A→B 传递(长度为 λg/4),输出的相位比输入滞后 π/2。 2. **耦合端**:信号在主线和支线交点A处分流,分别沿路径 A→B→C 和 A→D→C 前进。这两路信号等幅同相,在叠加后从端口③输出,且与输入信号的相位滞后 π。 3. **隔离端**:信号通过两条不同长度的路径传递(A→D 为 λg/4;A→B→C→D 为 3λg/4),这两路信号等幅反相,在理想情况下相互抵消,使得端口④无输出。 由此可以看出直通端和耦合端之间存在90°的相位差,而隔离端理论上没有输出信号。 ##### 2.2 关键参数 - **耦合度(Coupling)**:定义为输入功率P1与耦合端口输出功率P3的比例(单位dB)。较大的耦合度表示较弱的耦合强度;当耦合度为3dB时,从该端口输出的信号是输入的一半。 - **方向性系数(D)**:衡量直通端和耦合端之间的相位差异。 - **隔离度(Isolation)**:定义为输入功率P1与隔离端输出功率P4的比例。理想情况下无信号通过此路径;但在实际应用中,由于反射效应仍会有少量的功率传递至该端口。因此,在设计过程中需尽量减少这一部分的输出以增强方向性和耦合强度。 #### 三、原理图及仿真分析 根据设计要求,当Z2 = 100Ω时,则有 Z1 = 70.7Ω (即 Z1 = sqrt(2) * Z2 )。使用微带线工具(TXLine)来计算宽度和长度。随着阻抗增加,传输线变得更窄更长。 ##### 3.1 原理图与Layout结构 - **原理图**:包含四个端口(输入、直通、耦合及隔离)。 - **布局结果图**:显示了微带线的具体布局和连接方式。 ##### 3.2 损耗分析 - **损耗**: -3dB - **隔离度**: -58dB 为了优化性能,需要通过调整四分之一波长长度来调节谐振频率偏移,并且通过改变宽度控制损耗。如果S21和S31的损耗差异显著,则会导致效率降低;因此应尽量使两者接近于-3dB并保持等功分状态。如果不平衡可以通过增大某一路线宽增加其损耗,从而实现均衡。 通过对AWR仿真分支线定向耦合器的设计与分析,我们能够深入了解该器件的工作原理、关键参数及其对性能的影响,在微波无源设备设计和优化中具有重要的参考价值。
  • ADS仿真线滤波
    优质
    本研究利用ADS软件仿真分析技术,设计并优化了高性能微带线耦合滤波器,探讨其在射频通信中的应用潜力。 使用ADS软件进行仿真搭建了一个中心频率为2.45GHz、带宽为0.1GHz的微带线耦合带通滤波器,并可以自行更改为3阶或4阶带通滤波器。文件格式为DXF。
  • 线电磁特性实验验证
    优质
    本文针对微带线电磁耦合特性进行深入研究和理论分析,并通过一系列实验进行了充分验证。 本段落研究了微带线的电磁耦合特性,并通过实验验证了分析结果。作者将微带线转换为有损传输线模型,在此基础上计算平面波矢量并求解等效激励源,利用BLT方程(Bramlet-Lewin-Tsai)来确定不同入射模式下电磁波与微带线之间的耦合终端响应。 研究发现,当电场平行于微带线或垂直于PCB时会产生强烈的耦合效应。实验结果表明模拟和实际测试数据一致。此外,文章还指出在平行激发条件下,峰值电压是垂直激发的两倍,并且微带线上产生的电场强度可以达到毫伏级。 关键词包括:微带线耦合特性、BLT方程、终端响应及峰值电压等。实验结果表明,在分析电磁波与微带线之间的相互作用时,BLT方程是一个有效的工具;它可以详细描述不同入射角度下电磁波和微带线的交互过程及其特点。 通过将微带线视作有损传输系统(包含传播损耗和辐射损耗),作者深入探讨了其耦合机制,并得出了终端响应的具体表达式。文章还研究了平面波在各种方向上对微带线耦合特性的影响,指出电场与微带线平行时的耦合力最强而垂直时最弱。 此外,文中提到改变微带线的设计参数(如宽度、高度及介质板厚度等)可以调节其耦合性能。作者通过对比不同入射模式下的模拟和实验结果证明了模型的有效性,并为优化电路设计提供了数据支持。 文章中还讨论了一些影响微带线耦合特性的关键因素,例如相对介电常数εr、宽度W及高度h等参数的变化规律及其对峰值电压与场强分布的影响。这些发现有助于更好地理解并调控高频电路中的微带线性能。 该研究由信息工程大学信息系统工程学院的研究人员完成,表明了其得到了专业机构的支持和认可。这项工作不仅为理论分析提供了依据,也为实际应用中优化微带线设计提出了指导方针,具有重要的学术价值及实用前景。
  • ADS线通滤波设计.pdf
    优质
    本文探讨了采用先进设计系统(ADS)软件进行平行耦合微带线带通滤波器的设计方法,详细分析了其工作原理和优化过程。 ### 基于ADS设计平行耦合微带线带通滤波器的知识点解析 #### 一、引言 在现代通信系统中,滤波器作为核心元件之一,主要用于信号处理过程中选择性地通过特定频率范围内的信号而阻止其他频率成分。微带线带通滤波器因其在射频和微波频段的良好性能、低成本和易于制造等特点受到广泛青睐。然而,在实际设计过程中,往往会遇到两个主要问题:(1)在截止频率附近,通带内的电压驻波比波动超过预期;(2)实际制作的滤波器带宽与设计带宽存在偏差。本段落将详细介绍一种基于ADS软件设计平行耦合微带线带通滤波器的方法,并探讨如何解决上述两个问题。 #### 二、平行耦合微带线带通滤波器的电路结构 平行耦合微带线带通滤波器的基本单元是由两条相距较近的微带线构成的平衡耦合节。这两条微带线之间会产生电磁耦合现象,形成奇模和偶模。这种耦合效应导致了奇模特性阻抗和偶模特性阻抗的产生。当微带线的长度为滤波器中心频率对应波长的四分之一时,微带线具备了带通滤波器的特性。为了获得更好的滤波效果和陡峭的通带到阻带过渡,通常会将多个这样的平衡耦合节级联起来形成平行耦合微带线带通滤波器。 #### 三、平行耦合微带线带通滤波器的设计方法 ##### 3.1 设计步骤 设计平行耦合微带线带通滤波器的过程主要包括以下几个步骤: 1. **制定技术要求**:明确滤波器的工作频率范围、插入损耗等关键指标。 2. **选择设计方法**:根据技术要求选择合适的滤波器类型和标准低通滤波器参数。 3. **确定特征阻抗**:计算奇模和偶模的特性阻抗值,进而确定微带线的宽度、间距和长度。 4. **仿真优化**:使用EDA工具如ADS进行初步设计的仿真和优化,并通过误差分析或调谐范围分析进一步提高设计质量。 5. **制作样品**:完成所有设计和优化后,制作物理样品进行实际测试。 ##### 3.2 参数确定 在设计过程中,需要特别关注微带线的宽度、间距和长度等参数。这些参数直接影响滤波器的性能。例如,滤波器的带宽与微带线的长度有关,通常设定为中心频率对应波长的四分之一。为了解决设计中常见的两个问题,可以通过以下两种方法进行改进: - 在滤波器内部使各节影像阻抗与微带滤波器内相应阻抗在中心频率和边频上建立特定关系,以此来控制电压驻波比。 - 通过每一节的长度近似为中心频率对应波长的四分之一,在通带中心附近实现阶梯式变化以减少不连续性带来的影响。 #### 四、设计实例与仿真分析 为验证上述方法的有效性,文中给出一个具体的案例。该案例设计了一个中心频率为10GHz的平行耦合微带线带通滤波器,并利用ADS软件进行了仿真分析。结果显示通过改进措施能够有效地控制电压驻波比波动并确保实际带宽和设计一致。 #### 五、结论 本段落详细分析了平行耦合微带线带通滤波器的电路结构、设计方法及关键参数计算,结合具体实例验证其有效性,并提供了一套基于ADS软件的设计方案。该方法不仅解决了传统设计中的问题,还提高了整体性能,在实际工程应用中有重要参考价值。
  • ADS线通滤波设计优化
    优质
    本文探讨了利用先进设计系统(ADS)软件对平行耦合微带线带通滤波器进行设计和优化的方法,旨在提高滤波性能。通过理论分析及实验验证,提出了一种新型结构以实现紧凑、高性能的射频前端应用需求。 本段落介绍了一种使用ADS(Advanced Design System)软件设计和优化平行耦合微带线带通滤波器的方法,并提供了详细的设计步骤。文中结合这种方法利用ADS展示了中心频率为2.6GHz、带宽为200MHz的微带带通滤波器的具体设计与优化过程及仿真结果,同时给出了电路版图Momentum仿真的相关数据。通过这些仿真结果可以看出:所提出的方法是切实可行的,并能够满足设计要求。