Advertisement

该文件包含基于DBN的变压器故障诊断研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过对深度置信网络的持续改进,构建了一种分类器,该分类器能够基于变压器所产生的特征气体,对变压器的运行状况进行诊断和详细的分析评估。该分类器包含完整且可以直接运行的MATLAB代码,为用户提供了便捷的使用体验。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DBN应用】利用DBN进行MATLAB代码.zip
    优质
    本资源提供基于深度置信网络(DBN)的变压器故障诊断方法及其实现代码,采用MATLAB编写。适合电力系统研究人员和技术人员学习参考。 基于DBN实现变压器故障诊断附matlab代码
  • PNN应用.pdf
    优质
    本文探讨了概率神经网络(PNN)在变压器故障诊断中的应用,通过分析变压器运行数据,提出了一种有效的故障识别和预测方法。 基于概率神经网络的变压器故障诊断研究由黄云霏和冀常鹏提出。这项工作对于保障变压器的安全运行、减少事故发生具有重要意义。文中提出的方案旨在提升变压器故障诊断的有效性。
  • BP网络
    优质
    本研究采用BP神经网络模型对变压器进行故障诊断分析,通过训练大量样本数据,实现高效准确地识别变压器潜在故障类型。 利用BP神经网络进行变压器故障诊断,以特征气体含量的比值作为输入,在MATLAB中建立故障诊断模型。
  • DBN检测.zip
    优质
    本项目为一个基于深度信念网络(DBN)的变压器故障检测系统。通过训练DBN模型识别变压器运行数据中的异常模式,实现高效准确的故障预测与诊断。 这是对深度置信网络的进一步优化,形成了一个分类器,能够根据变压器的特征气体来诊断分析其故障,并附有完整的可运行MATLAB代码。
  • BP神经网络
    优质
    本研究采用BP(Back Propagation)神经网络技术,针对电力系统中的变压器进行故障诊断。通过训练神经网络模型识别不同运行条件下变压器的状态特征,准确预测并诊断潜在故障,从而提高系统的安全性和可靠性。 基于BP神经网络的变压器故障检测方法包括模型训练及测试。
  • 三电平逆开路
    优质
    本研究专注于三电平逆变器在运行过程中遇到的开路故障,通过分析其电气特性,提出一种有效的故障诊断方法,以保障设备稳定运行。 为了解决传统三电平逆变器开路故障诊断方法中存在的计算复杂度高、准确率低等问题,本段落提出了一种基于小波分析与粒子群优化支持向量机的新型诊断方法(WT-PSO-SVM)。首先,在深入研究了三电平逆变器中的三相电流信号特征后,我们利用三层小波技术对这些信号进行分解,并从各个频带中提取能量作为故障识别的关键特征。然而,部分故障情况下所提取的能量特性非常接近,这使得它们难以被准确区分。因此,为了提高诊断的准确性,在此过程中引入了正半周比例系数作为一个辅助性特征。 接下来,我们将归一化后的能量值和正半周比例系数组合成一个向量,并将其输入支持向量机进行分类训练。同时利用粒子群算法对支持向量机的相关参数进行了优化调整,以期获得最佳的故障识别效果。实验结果表明:WT-PSO-SVM方法能够有效诊断出三电平逆变器中的开路故障,相较于其他传统的方法而言具有更高的准确率和速度,并且在面对负载变化或噪声干扰时仍能保持较高的故障检测精度(达到97.8%)。
  • 粒子群算法_粒子群算法_slippedjk3_MATLAB应用_MATLAB_
    优质
    本文运用粒子群优化算法进行故障诊断的研究,通过MATLAB实现算法仿真与分析,探索其在故障检测和定位中的高效应用。作者slippedjk3深入探讨了该方法的适用性及优势。 基于MATLAB的例子群算法故障诊断实例展示了如何利用例子群优化(EPSO)算法进行复杂系统的故障诊断。该方法通过模拟群体智能行为来解决多变量、非线性问题,适用于电力系统、机械装备等领域的故障检测与定位。 具体实现中,首先需要定义待解决问题的数学模型以及目标函数;接着初始化粒子群,并设置相关参数如学习因子、最大迭代次数等;然后根据EPSO算法更新每个例子的位置和速度,在每一次迭代过程中评估当前解的质量并进行必要的调整。通过多次迭代后可以获得较优的故障诊断结果。 这种方法的优点在于能够处理非线性及多峰问题,具有较强的全局搜索能力和鲁棒性,同时计算效率也较高。然而其缺点是参数选取较为关键,不当的选择可能会影响算法性能或收敛速度。因此,在实际应用时需要根据具体情况进行适当的调整和优化以达到最佳效果。
  • 电力.pdf
    优质
    本文档深入探讨了电力变压器可能出现的各种故障类型,并提供了有效的诊断方法和预防措施,旨在保障电力系统的稳定运行。 电力变压器故障与诊断PDF涵盖了有关电力变压器可能出现的问题及其检测方法的详细内容。该文档深入探讨了如何识别和解决电力变压器的各种故障,并提供了实用的技术指导。
  • 极限学习机.zip
    优质
    本研究采用极限学习机算法进行变压器故障诊断,通过分析变压器运行数据,实现对潜在故障的有效预测和识别,提高电力系统的安全性和可靠性。 标题中的“极限学习机变压器故障诊断”指的是电力系统中一种用于检测与诊断变压器故障的技术方法,并结合标签MATLAB可以理解为这是一个使用MATLAB编程实现的极限学习机(ELM,Extreme Learning Machine)算法在变压器故障诊断领域的一个应用案例。 下面将详细介绍极限学习机及其在变压器故障诊断中的具体应用。作为一种快速的单隐层前馈神经网络训练技术,极限学习机于2004年被Huang等人提出。其独特之处在于通过随机初始化权重和偏置,并仅需一次线性求解即可得到隐藏层节点输出权重,从而大大减少了模型训练时间的同时保证了预测精度的高水平表现。 ELM的核心理念是将输入权重与隐含层节点偏置视为固定不变量,主要优化目标集中在确定输出层权值上。这种设计使得极限学习机在面对大规模数据集时展现出高效的计算性能及出色的泛化能力。 当应用于变压器故障诊断领域,ELM通常被用于特征提取和分类任务。例如,在识别绕组、绝缘或油类等不同类型的变压器故障中,各种电气(如电压、电流、谐波、局部放电)与机械参数(振动噪声)的监测数据会被收集并经过处理后输入到模型进行训练。 在提供的MATLAB代码包里包括三个主要脚本: - `main.m`:该主程序文件涵盖了从加载故障样本数据,预处理步骤,ELM模型构建、测试及结果展示等全流程。 - `elmtrain.m`:此函数负责设置网络参数如输入节点数和隐含层节点数量,并随机生成初始值后执行训练过程。 - `elmpredict.m`:用于实现预测功能的脚本,在给定新的数据样本条件下,通过已有的ELM模型计算出故障类型或程度。 通常情况下,程序会先读取变压器运行状态下的监测记录并进行必要的预处理操作(如标准化、去噪等),随后调用训练函数完成模型学习。经过充分验证后,再利用预测脚本对未知样本执行诊断任务,并通过准确率、召回率和F1分数等多种性能指标评估其有效性。 综上所述,该MATLAB实现方案不仅帮助工程师们快速掌握ELM算法在变压器故障检测中的应用技巧,还为电力系统的可靠运行提供了有力的技术保障。同时,也为此类机器学习技术在其他电力设备健康监测领域内的推广使用树立了良好示范效应。
  • PNN概率神经网络在分类预测应用.rar_fault+transformer_ _ pnn
    优质
    本研究探讨了利用概率神经网络(PNN)对变压器故障进行分类和预测的应用,旨在提升变压器故障诊断准确性。通过分析不同类型的变压器故障数据,提出了一种基于PNN的高效故障识别方法。该模型在多个测试案例中展现了卓越性能,为电力系统的稳定运行提供了有力保障。 概率神经网络的分类预测在变压器故障诊断中的应用研究,内容包括基于PNN的方法以及相关的源程序和数据。