Advertisement

脉冲变压器及其相关电路。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
开关电源的核心组成部分是脉冲变压器。这份资料对脉冲变压器的研究和分析,被认为是目前最优质的参考资料。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 与应用
    优质
    《脉冲变压器与应用电路》一书深入浅出地讲解了脉冲变压器的工作原理及设计方法,并结合大量实例介绍了其在各类电子设备中的实际应用。 脉冲变压器是开关电源的关键元件。这是对脉冲变压器分析的最好资料。
  • 基于的可控硅调
    优质
    本项目介绍了一种采用脉冲变压器控制的可控硅调压电路设计,能够高效、精确地调节电压输出。该技术适用于多种电力电子设备中以提高能源利用效率和系统稳定性。 本段落介绍了一种使用脉冲变压器的可控硅调压电路的制作方法。
  • 缩的三种方式分类.zip_rd算法
    优质
    本资料探讨了脉冲压缩技术中的三种主要实现方式,并详细介绍了与RD(率失真)算法相关的理论和应用。 详细介绍三种脉冲压缩方式的使用方法,这些技术经过亲测效果良好且易于理解。
  • 源.zip_12_三整流_三_整流仿真_移
    优质
    本资源包含12脉冲三相整流电路及移相变压器仿真的详细设计和分析,适用于电力电子领域的学习与研究。 ABC三相移相整流变压器的MATLAB仿真实现12脉波整流电路。
  • 参积累
    优质
    《脉冲压缩及相参积累》是一篇探讨雷达信号处理技术的文章,深入分析了脉冲压缩技术和相参积累方法在提高雷达系统分辨率和检测性能中的应用。 这段文字描述了用于课程学习的资料内容,涵盖了脉冲压缩与相参积累方面的知识,并且提供了一份非常全面的文档。
  • 基于隔离的MOSFET驱动设计
    优质
    本研究提出了一种采用脉冲变压器进行电气隔离的MOSFET驱动电路设计方案,旨在提升高压环境下的信号传输效率与安全性。该方案通过优化磁芯材料和绕组布局,实现了良好的电气绝缘及高速开关特性,适用于电力电子设备中的高频、高压应用场景。 由于MOSFET具有控制简单、输入阻抗高、噪声低以及热稳定性好和寿命长等诸多优点,在中小功率及高频开关电路领域得到了广泛应用。本段落主要研究了其驱动电路,并在了解基本需求的基础上设计了一种采用脉冲变压器隔离的新型MOSFET驱动电路,详细介绍了具体参数的设计过程。通过构建实际模型并进行实验验证后发现,该驱动电路能够满足预期性能指标:具有广泛的占空比调节范围、响应速度可达到100kHz,并且具备隔离保护功能,在工业生产中展现出一定的实用价值。
  • MOSFET栅极驱动的分析与仿真.pdf
    优质
    本文档深入探讨了脉冲变压器的工作原理及其在MOSFET栅极驱动电路中的应用,并通过详细的仿真分析验证其性能。适合从事电力电子研究的专业人士阅读。 为了使BUCK变换器中的MOSFET能够浮地工作,采用脉冲变压器构成其栅极驱动电路。分析了驱动电路的结构和工作原理,并对脉冲变压器进行了设计,提出了增大磁化电感和减小漏感的方法,从而有效传输驱动波形,有利于降低MOSFET损耗并提高BUCK变换器效率。通过软件仿真和实验验证了脉冲变压器驱动电路的效果。
  • 发生图汇总
    优质
    本资料汇集各类高压脉冲发生器电路设计方案,涵盖不同应用场景与技术要求,为电子工程师和科研人员提供设计参考。 高压脉冲发生器电路图一展示了其主放电回路的等效电路:S表示可控开关;C1代表电容器组电容;R1是高压变压器输入端的损耗电阻,而L1、L2分别对应初次级电感,K为耦合系数。此外,C2是次级分布电容,R2则作为总的工作负载。 在图二中展示的是可触发脉冲发生器电路设计。此电路主要由CD40012输入端四或非门集成电路及其外围元件构成。具体来说,或非门1和或非门2构成了单稳态电路,在接收到触发信号后能够生成一个控制脉冲。而通过调节电位器RPl可以改变振荡频率的不稳态电路则由或非门3、4组成,并且在该控制脉冲的作用下工作,使得在一个给定的时间T内产生的脉冲数量可以在2到30之间调整。 图三中的占空比可调实用脉冲信号发生器中,a1与周围元件共同构成频率产生电路。此部分通过连接三个不同电容来对应三种不同的频率范围,并且使用rpl进行精细调节。而由a3及周边元器件组成的调制信号生成电路同样提供三档选择机制。
  • buck.zip_DC-DC buck_matlab高频设计_直流_高频
    优质
    本资源提供了基于MATLAB的Buck型DC-DC变换器的设计方案,适用于高频电路与直流变压器应用,并涵盖高频脉冲电源系统。 使用MATLAB对Buck电路进行了仿真,该仿真是简单且直接可用的。Buck电路是一种DC-DC转换器,简而言之是通过震荡电路将直流电压转变为高频电源,然后经过脉冲变压器、整流滤波回路输出所需的直流电压,类似于开关电源。
  • 正弦波逆的工作原理
    优质
    本文介绍了正弦波逆变器的基本工作原理,并展示了其核心电路结构图,帮助读者理解逆变器如何将直流电转换为纯净的交流电。 逆变器是电力电子学中的重要设备之一,其主要功能在于将直流电能转换为交流电能。根据输出波形的不同,逆变器可以分为方波逆变器、修正波逆变器以及正弦波逆变器三类。其中,正弦波逆变器能够产生接近完美的正弦波形的电力供应,其质量通常优于市电网。 工作原理方面,正弦波逆变器基于脉宽调制(PWM)技术,并采用高级形式——正弦脉宽调制(SPWM)。通过比较固定的三角波和可变化的正弦信号,SPWM可以生成一系列宽度随时间改变的脉冲序列来模拟出高质量的正弦波。这是保证输出电能品质的关键因素。 正弦波逆变器的优点包括低失真度、对收音机及通讯设备干扰小、噪声水平低以及负载适应能力强等特性。这些优点使其适用于精密设备,如医疗仪器、科研装置和音响系统等领域,并且能够提供高质量的交流电源而不会造成电网污染或安全隐患。 然而,正弦波逆变器也存在一些缺点:首先成本较高;其次需要复杂的控制电路及精细工艺制造过程,导致价格相对昂贵。另外对维护人员的技术水平要求也很高。 从结构上看,它由逆变桥、逻辑控制器和滤波装置三部分组成。通过切换开关器件(如MOSFET或IGBT),可以实现直流电转换为交流电的过程;而PWM集成控制器则负责控制各个元件的动作顺序;最后经过滤波器去除杂音确保输出的是纯净的正弦波形。 在实际应用中,它被广泛应用于需要稳定电源的各种场合。比如太阳能发电系统将光伏板产生的电力转变为可用形式连接到电网或直接供给负载使用;此外移动办公、车载充电以及应急备用电源等方面也常采用这类设备保障供电需求。 随着技术进步,正弦波逆变器也在不断改进优化中:通过选用更高效的开关元件、提高控制策略水平并增加智能监控与故障诊断功能等方式提升性能。这些措施不仅扩大了其应用范围还增强了可靠性和效率性。 在设计方面,则需综合考虑电压转换比率、温度管理机制以及散热方案等因素以确保设备长期稳定运行,并且能够高效地进行能量转化同时保障使用安全。 总而言之,正弦波逆变器作为一种具备高精度和稳定性要求的电力电子器件,在众多领域内发挥着不可或缺的作用。对于从事相关行业的专业人士而言掌握其工作原理及技术细节至关重要,而随着研究深入该类设备将为用户提供更加完善且可靠的电能解决方案。