Advertisement

雷达预警模拟

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《雷达预警模拟》是一款高度仿真的军事战略游戏,玩家可以体验到构建防御系统、监测空中威胁及应对各类复杂战争场景的过程。通过精密的操作和策略制定,挑战自我极限,在虚拟战场上保护国家安全。 该MATLAB程序用于模拟预警雷达,并附有文档说明。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《雷达预警模拟》是一款高度仿真的军事战略游戏,玩家可以体验到构建防御系统、监测空中威胁及应对各类复杂战争场景的过程。通过精密的操作和策略制定,挑战自我极限,在虚拟战场上保护国家安全。 该MATLAB程序用于模拟预警雷达,并附有文档说明。
  • 代码_与扫描_MATLAB_方程分析_
    优质
    代码雷达项目专注于利用MATLAB软件进行雷达系统的设计、模拟及优化。通过解析和应用雷达方程,本项目致力于提升雷达系统的预警能力和目标检测精度,为科研人员提供一个强大的工具平台。 推导雷达方程并建模计算美国预警机雷达对大型战斗机的最大发现距离。在建模过程中包括天线方向图以及扫描调制(即天线方向图的动态调整)等因素,并考虑不同脉冲积累数的影响。
  • 数据器与目标器(C,C++)
    优质
    本项目聚焦雷达数据及目标模拟技术,采用C和C++编程语言开发。旨在通过仿真雷达信号与目标回波,为雷达系统测试提供精准、高效的解决方案。 生成雷达数据的模拟以便转换为图形显示,在Visual Studio 2010上可以实现并运行。
  • 脉冲仿真
    优质
    脉冲雷达模拟仿真技术是指通过计算机软件或硬件系统对脉冲雷达系统的性能进行建模和测试的技术。这项技术能够帮助工程师在实际制造之前预测雷达的行为,并优化其设计,从而提高研发效率并降低成本。 仿真脉冲多普勒雷达的信号处理:设定脉冲宽度为学生学号末两位数(单位μs),重复周期200μs,载频10GHz,输入噪声采用高斯白噪声。目标模拟分为单目标和双目标两种情况,其中回波信噪比可变范围从-35dB到10dB;速度变化区间为0至1000m/s;幅度在1至100之间变动;距离则可以在0至10,000米范围内调整。相干积累总时宽不超过10ms。 对于单目标情况,需给出回波视频表达式以及脉冲压缩和快速傅立叶变换(FFT)后的结果,并通过仿真图形展示处理效果。同时需要分析各级信号处理的增益与时间宽度及带宽的关系;并探讨在脉压过程中出现的多普勒敏感现象及其对性能的影响,包括绘制主旁瓣比随多普勒变化曲线。 对于双目标情况,则要模拟大目标旁瓣掩盖小目标的现象,并展示不同距离和速度下的分辨能力。在整个仿真中加入白噪声时应使用randn函数;并且整个回波信号应在一次生成后添加时间延迟及多普勒效应信息,最后通过数据分析计算输出信噪比。
  • Livox激光(livox_laser_simulation)
    优质
    livox_laser_simulation是一款用于仿真环境的软件工具,它能够精确地模拟Livox系列激光雷达的数据输出,为开发者和研究人员提供了一个便捷、高效的测试平台。 Livox激光模拟提供用于插件的软件包。该软件包要求ROS(即动能)版本为7.0,Ubuntu版本为16.04。已发布的点云消息在主分支中使用sensor_msg / PointCloud格式;若需获取snesor_msg / PointCloud2消息,则需要切换到“PointCloud2-ver”分支。 编写urdf文件前,请先执行catkin_make或catkin构建命令以完成插件的安装配置工作。演示运行示例可以通过以下指令查看:roslauch livox_laser_simulation livox_simulation.launch。此外,通过修改启动文件中的scan_mode目录并选择相应的CSV文件,可以切换不同的激光雷达模型(例如avi)。
  • 系统的.pdf
    优质
    本文档探讨了雷达系统在不同场景中的模拟技术,包括信号处理、目标检测和跟踪等关键方面。通过仿真分析优化雷达性能。 雷达系统模拟是工程技术领域中的一个重要分支,在军事、航空、航海、航天以及民用的气象监测与交通管理等方面有着广泛的应用。这类书籍详细介绍了雷达系统的工作原理及信号发射过程,包括如何在实际环境中进行杂波模拟。 雷达的核心在于其发射信号,由雷达发射机产生并通过天线传播出去,通常分为连续波和脉冲波两种形式。连续波雷达主要用于测量目标速度,而脉冲波雷达则用于测定目标距离。在模拟过程中需考虑频率、功率、脉冲宽度及重复率等参数对系统性能的影响。 杂波的生成是雷达系统模拟中的关键环节之一。这些不需要的信号包括地表反射或散射回波以及电子设备噪声等,均会影响雷达系统的检测能力与抗干扰性能。在模拟中需准确再现实际环境下的杂波特性以评估上述性能指标。 此外,雷达方程也是理解其工作原理的基础,并在设计过程中起到指导作用。它根据信号传播损耗、目标反射面积及天线增益等因素计算系统对目标的探测能力。 书籍中会具体分析地面雷达和机载雷达的区别与联系。前者通常用于固定或移动平台,具有大尺寸天线与高发射功率以覆盖远距离;后者则安装于飞机或无人机上,要求体积小、重量轻并具备良好的抗机动性。 模拟时需考虑飞行器速度、高度变化等因素对性能的影响,并且机载雷达面对的杂波环境更为复杂。除了地面反射外还需考虑气象条件与空中交通等多方面因素。 计算机仿真软件通常用于进行雷达信号模拟以预测其在真实环境中的表现。例如,可利用蒙特卡洛方法评估检测概率或通过物理光学算法模拟散射特性。 雷达系统模拟不仅有助于工程师提前分析和评估设计方案、降低研发成本并加快进程;还能测试极限性能以发现潜在问题。 该技术综合了信号处理、电磁学及计算机仿真等多学科知识,为希望深入了解的初学者提供了全面的学习路径。从基本概念到实际应用都有详细阐述与案例分析,帮助读者掌握核心知识,并为进一步研究打下坚实基础。
  • CFAR代码_Matlab恒虚_CACFAR检测_恒虚算法
    优质
    本文档介绍了MATLAB环境下实现的CACFAF(细胞平均恒虚警率)雷达检测算法,适用于研究和应用中的目标检测与跟踪。 雷达恒虚警检测CACFAR基于MATLAB的实现方法涉及使用MATLAB软件来开发和测试常数假警报率(Constant False Alarm Rate, CACFAR)算法,这是一种在复杂环境中保持固定误报概率的重要技术。这种方法适用于需要精确目标识别的应用场景中,能够有效地抑制杂波并提高检测性能。
  • 仿真与PPI显示_器_目标分析_PPI显示器_PPI
    优质
    本作品专注于雷达仿真技术,特别是PPI(平面位置指示器)显示的应用。通过开发先进的雷达模拟器和进行细致的目标分析,以优化PPI显示器的性能和功能,为军事、气象及航空领域提供精准数据支持。 在雷达技术领域中,PPI(平面位置指示器)是一种常见的显示方式,它将雷达扫描的数据实时地投影在一个圆形屏幕上,并展示雷达波束扫过的二维空间的信息。本段落将深入探讨雷达仿真、雷达模拟器、雷达目标以及PPI显示器的相关知识。 雷达仿真是通过计算机来再现和测试雷达系统工作过程的一种技术手段,主要用于评估设计性能及操作员训练等方面的应用场景中。在进行仿真时,我们可以创建各种环境条件的模型,例如天气状况或地形特征等,以便研究雷达设备在这种复杂情况下的表现能力,并且预测新开发系统的预期效果。 接下来是关于雷达模拟器的部分介绍——这是一种硬件或者软件工具,用以精确地复制雷达信号从发射到接收处理的所有环节。通常包括了信号发生器、目标和干扰模拟装置等多个部分,在本程序中提到的是一个能够展示三个不同目标的简单PPI显示器模型。 所谓“雷达目标”,指的是被系统探测到的各种物体,如飞机、船只或建筑物等;通过发送电磁波并分析反射回来的数据来确定它们的位置及其他属性。在显示于PPI屏幕时,这些对象会被以特定符号或者颜色标记出来以便操作人员识别和追踪。 平面位置指示器(PPI)作为雷达系统中的一个关键组件,则是一种将数据转化为直观图像的方式。它围绕着天线中心展示出波束扫过的区域,并显示出目标的位置信息。在本程序中,这种显示器可以实时更新三个不同对象的相对位置及运动轨迹等细节。 现代PPI显示设备多采用液晶或高分辨率电子屏技术来实现动态的目标数据呈现功能,使操作员能够迅速掌握雷达覆盖范围内的所有重要信息并作出相应的判断和决策行动。而雷达仿真、模拟器以及目标识别与展示工具则是整个系统中不可或缺的部分,它们共同帮助用户了解并解析来自雷达扫描的信息,并有效地执行监视或追踪任务。 通过构建一个简单的三个目标的PPI显示器模型程序,我们能够为学习者提供一种直观的方式来理解和掌握有关雷达工作原理的相关知识。
  • 射频干扰-RFnoise.m
    优质
    RFnoise.m是一款用于雷达系统仿真与测试的MATLAB工具,它能产生符合实际场景需求的射频干扰信号,帮助工程师评估和优化雷达系统的抗干扰性能。 雷达射频干扰仿真-RFnoise.m 是一个用于模拟雷达系统中射频干扰的MATLAB脚本段落件。该文件名为RFnoise.m,主要用于研究和分析在不同环境条件下雷达系统的性能表现。通过使用这个脚本,研究人员可以更好地理解射频噪声对雷达信号的影响,并据此优化雷达的设计与工作参数。
  • MATLAB中的舰载
    优质
    本项目运用MATLAB软件进行舰载雷达系统的建模与仿真,旨在分析和优化雷达性能,提升目标探测能力和系统稳定性。 舰载雷达模拟主要实现的是在海杂波背景下检测运动目标的功能。