Advertisement

基于PIC16F1947的电容式触摸学习板电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目设计了一款基于PIC16F1947微控制器的电容式触摸学习板,提供详细的硬件电路图和软件编程指导,适合初学者快速掌握电容触控技术原理与应用。 我设计了一款基于PIC16F1947芯片的开发板,并将其原理图及PCB源文件分享出来,旨在帮助学习PIC的同学。该电容式触摸开发板采用USB供电,具有丰富的功能模块: 1. LED和按键 2. 串口通信 3. 触摸按键 4. 2.4G无线模块 5. 1.44寸TFT液晶显示模块 6. DS1302时钟芯片及备用电池 7. 蜂鸣器 8. IIC和SPI存储接口 9. RS485通信 附件中包含整个开发板的原理图和PCB源文件,使用Altium Designer软件可以打开。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PIC16F1947
    优质
    本项目设计了一款基于PIC16F1947微控制器的电容式触摸学习板,提供详细的硬件电路图和软件编程指导,适合初学者快速掌握电容触控技术原理与应用。 我设计了一款基于PIC16F1947芯片的开发板,并将其原理图及PCB源文件分享出来,旨在帮助学习PIC的同学。该电容式触摸开发板采用USB供电,具有丰富的功能模块: 1. LED和按键 2. 串口通信 3. 触摸按键 4. 2.4G无线模块 5. 1.44寸TFT液晶显示模块 6. DS1302时钟芯片及备用电池 7. 蜂鸣器 8. IIC和SPI存储接口 9. RS485通信 附件中包含整个开发板的原理图和PCB源文件,使用Altium Designer软件可以打开。
  • 按键
    优质
    触摸电容按键方案是一种利用电容变化检测技术实现无机械接触控制的电子开关解决方案。该方案具有防水、防尘、耐用性强等特点,在家电、仪器仪表等领域应用广泛。 BS81x系列芯片集成了2至16个触摸按键功能,能够检测外部触摸按键上的人手动作。该系列产品具有高集成度的特点,并且只需要少量的外围组件即可实现高效的触摸按键检测。 BS81x系列提供了串行和并行输出选项,方便与外部微控制器(MCU)进行通信,从而支持设备安装及触摸引脚监测等功能。芯片内部采用特殊集成电路设计,具备较高的电源电压抑制比,有效减少了误操作的可能性,在不利的环境条件下也能确保高可靠性。 此外,此系列触控芯片还配备了自动校准功能、低待机电流和抗电压波动等特性,为各种不同的应用提供了一种简单而有效的解决方案。
  • MCU按键解决
    优质
    本方案采用微控制器(MCU)实现高效、可靠的电容触摸按键功能,适用于各种电子产品,提供灵敏度高、抗干扰强的特点,提升用户体验。 基于MCU的电容感应式触摸按键方案 以下是根据给定文件生成的相关知识点: 1. 电容感应式触摸按键方案: 该解决方案采用微控制器(MCU)作为核心,旨在解决电阻屏耐用性差的问题。通过检测电容量的变化来判断按键操作,具有耐久、成本低、防水防污以及结构简单便于安装等特点。 2. ST提供的解决方案: ST的方案集成了自校准触摸面板功能、软件滤波技术及环境适应算法等特性,能够有效屏蔽各种复杂条件下的干扰。此方案基于STM8系列8位通用微控制器平台实现电容式触摸感应,并且无需额外添加专用芯片,仅需简单外围电路即可完成。 3. 电容式触摸按键的工作原理: 当人体接触时会改变感应区域的电容量,进而影响到充放电时间的变化。因此可以据此判断是否进行了按钮操作。 4. 在电磁炉环境下可能遇到的问题: 在使用环境中可能会受到来自电磁场以及电源波动带来的干扰,这些因素都可能导致误判或延迟响应等问题出现。 5. 减少外界干扰的方法: 为了克服外部环境的不良影响,可以通过硬件屏蔽技术和过零点检测技术来提高系统的稳定性和可靠性。这两种方法都可以帮助降低寄生电容对灵敏度的影响,并且选择在电磁辐射最弱的时候进行触摸操作可以进一步优化性能表现。 6. STM8S105S4微控制器: 这款来自ST的产品是一个高性能的8位MCU,支持3级流水线和哈佛架构设计。它的工作电压范围为3.0到5.5伏特,并且内置有精度达到16MHz的RC振荡器以保证处理器运行频率稳定在16MHz左右。此外还具备多种节能模式以及灵活配置时钟的能力;其引脚总数达34个,拥有2KB RAM和高达16KB Flash存储空间,同时也提供了一块具有高擦写次数(约30万次)的EEPROM用于数据保存。 7. 电容式触摸按键的应用潜力: 随着技术的进步和发展趋势来看,在厨房电器及其他领域中广泛运用该类传感器已成为可能。例如在烤箱和煎锅等设备上,通过设置于不透明玻璃背板后的独立按钮来实现控制功能;此外还可以将其整合进显示界面作为虚拟键使用或用于触控滚动指示器等功能部件当中。
  • 主流屏驱动IC
    优质
    本方案提供了一种先进的主流电容式触摸屏驱动集成电路解决方案,旨在优化触控性能和用户体验。 随着iPhone引领电容式触摸屏的应用,并且采用Android系统的智能手机也普遍使用这种屏幕技术,电容式触屏已成为当前主流的触控解决方案。市场上有许多驱动方案可供选择,以下是几个市场占有率较高的主流方案:FocalTech、Sitronix、EETI、ITE、Cypress和Novatek。
  • 屏与按键原理
    优质
    本文章详细介绍触摸屏和电容式触摸按键的工作原理及其应用领域,帮助读者理解这两种技术的基本概念和技术特点。 当人手接触到感应电极时,电极与地之间的电容会从原来的Cp变为Cp+2Cf,因此增加了。
  • STM32F407_TFTLCD屏模块资料包.rar(含LCD屏、stm32f407、屏、屏)
    优质
    本资源包包含STM32F407与TFT LCD电容触摸屏相关文档和代码,适用于学习和开发基于该芯片的电容触控项目。 STM32F407是意法半导体(STMicroelectronics)推出的一款高性能、低功耗的微控制器,属于Cortex-M4内核系列,在各种嵌入式系统设计中广泛应用,包括图形界面丰富的设备如LCD电容触摸屏模块。 LCD(Liquid Crystal Display)电容屏通过控制液晶分子排列来显示图像。该屏幕利用人体导电性测量手指与屏幕间的电容变化以识别触控位置。STM32F407集成的GPIO口、ADC和DMA等资源,使其非常适合处理此类信号读取及处理。 实现LCD电容触摸屏功能需先初始化STM32F407:设置时钟、配置GPIO端口为输入模式(用于连接触摸屏XY轴感应器)、设定ADC采样率与分辨率。通过ADC采集各节点的电容值,这些变化反映手指接近屏幕的程度。滤波算法如滑动平均或中值滤波可提高准确性和稳定性。 关键部分是编写触摸屏驱动程序,它负责将ADC结果转换为坐标信息,并根据该信息识别触摸事件。通常定义一个物理到屏幕坐标的映射函数,并实现用于检测并响应触控的中断服务例程。 在项目实践中可能会有一个示例代码或实验指导来帮助连接和测试ATK-7 TFTLCD电容触摸屏模块,涵盖以下步骤: 1. 硬件连接:确保STM32F407与屏幕的所有信号线正确无误。 2. 软件配置:编写初始化代码以配置相关外设。 3. 读取数据:使用ADC读取并处理电容值。 4. 坐标转换:将电容值转化为屏幕坐标。 5. 触摸事件处理:检测触摸行为,如单击、滑动等,并实现相应功能。 6. 显示反馈:在屏幕上显示操作效果。 实际应用中还需考虑抗干扰能力、多点触控支持及灵敏度调整等问题。通过不断调试优化可获得稳定且用户体验良好的电容触摸屏系统。结合STM32F407与LCD电容触摸屏,可以为各种嵌入式设备提供直观的人机交互界面。
  • 屏与其它对比分析-
    优质
    本文深入探讨了电容触摸屏与其他类型触摸屏的技术特点和应用优势,旨在为读者提供全面的比较分析,帮助理解电容触摸屏的独特魅力。 电容触摸屏与其他类型触摸屏相比具有以下优点: 1. 支持真实多点触控。 2. 透明度高。 3. 耐用性好。 4. 分辨率高。
  • STM32 按键.zip
    优质
    本资源提供STM32微控制器实现的电容式触摸按键解决方案,包括硬件设计和软件编程示例,适用于智能家居、工业控制等领域。 STM32F103ZET6项目的代码经过稍微的调整后可以在STM32F103C8T6芯片上运行。