Advertisement

通过DMA,FreeRTOS+STM32F103读取ADC数据并利用队列进行传输。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用STM32F103单片机,成功采集了六路ADC数据,随后通过DMA控制器将这些数据高效地读取并存储至内存数组之中。在FreeRTOS实时操作系统中,任务1负责将采集到的数据通过队列机制进行传输,而任务2则利用队列机制从队列中接收ADC数据。最后,任务2将接收到的数据通过串口接口输出显示。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于FreeRTOSSTM32F103DMA ADC
    优质
    本项目采用STM32F103微控制器并结合FreeRTOS操作系统,通过DMA实现ADC连续数据采集,并利用任务间通信机制进行高效数据传输。 在STM32F103单片机上采集六路ADC数据,并通过DMA读取到数组中。然后,在FreeRTOS系统中的任务1里使用队列将采集的数据传输至另一个任务。接着,任务2从队列中获取这些ADC数据并通过串口打印出来。
  • STM32L073DMA方式ADC串口
    优质
    本项目介绍如何使用STM32L073微控制器通过DMA技术高效地从多个模拟输入端口采集数据,并利用串行通信接口将采集到的数据传输出去。 本程序使用HAL库实现了STM32L073通过DMA方式获取三通道ADC转换数据的功能,并在main函数之外完成了此功能的实现。此外,还采用了串口DMA方式发送数据。
  • 使FreeRTOSSTM32F103串口
    优质
    本项目演示了如何在STM32F103微控制器上利用FreeRTOS操作系统实现串行通信数据的队列管理,有效提升多任务环境下的数据处理效率。 在STM32F103单片机上使用FreeRTOS进行串口数据传输,在串口中断中通过队列存储接收到的串口数据,并在定时器中断中从队列读取这些数据并打印出来。
  • STM32F103的16ADCDMA
    优质
    本项目详细介绍如何利用STM32F103微控制器进行16通道模拟信号采集,并使用DMA技术实现高效的数据传输。 使用STM32F103单片机通过ADC1采集16个通道的数据,并利用DMA传输这些数据,最后通过串口打印出来。
  • STM32F3ADCDMA
    优质
    本项目介绍了如何使用STM32F3微控制器结合ADC(模数转换器)和DMA(直接内存访问)技术实现高效的数据采集与传输过程,适用于嵌入式系统开发。 在STM32F3系列微控制器上使用ADC模块对连接的外部电位器输入电压进行采样,并通过DMA模式传输转换结果。然后对每8次采样的数据取平均值,以实现滤波处理。
  • STM32DMA实时六路ADC串口(蓝牙模块)
    优质
    本项目利用STM32微控制器结合DMA技术,实现对六个模拟通道的数据进行高速采集,并通过蓝牙无线通信模块将数据实时发送至远程设备。 使用HAL库,在STM32T上通过DMA实时读取6路ADC数据,并通过串口(蓝牙模块)发送。其中蓝牙的发送频率可以通过无线方式进行编程控制。
  • STM32 使ADC和USART DMA
    优质
    本项目介绍如何使用STM32微控制器结合ADC(模数转换器)与USART DMA技术实现高效的数据采集及传输。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计中有广泛应用。当ADC(模数转换器)与USART(通用同步异步收发传输器)配合DMA(直接内存访问)进行数据处理时,可以实现高效、低延迟的数据传输,尤其适合实时性要求高的应用场景。 首先,STM32的ADC模块将模拟信号转化为数字信号供微控制器使用。该模块支持多通道配置、多种采样率和分辨率,并具备自动扫描功能。在配置过程中,需要设定采样时间、序列以及触发源等参数,并选择合适的电压参考源。 其次,USART是用于设备间数据交换的串行通信接口,在STM32中支持全双工模式即同时发送与接收数据的能力。它提供了多种帧格式、波特率和奇偶校验选项以适应不同的通信协议和应用场景。配置时需要设置波特率、停止位、校验位以及数据位等参数。 当ADC与USART结合使用,特别是在处理大量数据或高速传输需求的情况下,DMA的作用尤为关键。作为一种硬件机制,DMA可以直接在内存和外设之间进行数据传送,并且能够减轻CPU的负担。STM32中的DMA控制器支持多种传输模式包括半双工、全双工及环形缓冲区等。 配置ADC与USART的DMA传输时需要执行以下步骤: 1. 初始化DMA:选择适当的通道,如使用DMA1 Channel 1用于ADC1的数据传输,并设置其方向(从外设到内存)、优先级和循环模式。 2. 配置ADC:开启ADC功能并设定所需的通道、转换顺序及触发源。可以将启动转换的事件配置为由DMA请求触发,例如通过EXTI线或定时器事件。 3. 初始化USART:设置波特率、帧格式以及接收中断,并启用USART的DMA接收特性选择相应的DMA通道。 4. 连接ADC与DMA:使每次完成转换后都会向DMA发出请求,将ADC的转换结束中断连接到DMA请求上。 5. 链接DMA和USART:将目标寄存器设置为USART的数据发送位置以自动传输数据至串行通信接口中进行传送。 6. 启动DMA与USART:开启两者之后,整个过程会自行运作无需CPU介入。 实际应用中还需考虑中断处理机制如ADC转换完成中断以及USART接收完成中断用于错误状态和更新传输状态的管理。此外为避免数据丢失可以设置DMA半缓冲或全缓冲模式及USART流控功能来控制数据流量。 综上所述,通过利用STM32中的ADC、USART与DMA技术组合,在大量模拟信号采集和高速串行通信场景中能提供高效的解决方案并减少CPU处理时间从而提升系统整体性能。掌握这些配置技巧有助于灵活应对各种复杂的数据传输需求。
  • STM32F103串口2
    优质
    本项目详细介绍如何使用STM32F103系列微控制器通过串口2实现高效的数据发送与接收,适用于嵌入式系统开发和通信应用。 STM32F103通过串口2进行数据的发送与接收操作。每隔300毫秒发送一个字符,并且如果接收到数据,则将该数据原路发回出去。波特率为9600,无校验位和一位停止位。
  • STM32F103 使 ADC 采集 USART1
    优质
    本项目介绍如何使用STM32F103微控制器通过其ADC模块进行模拟信号采样,并利用USART1串行接口将采集的数据传输至外部设备。 STM32F103系列微控制器是STMicroelectronics推出的一款基于ARM Cortex-M3内核的高性能微控制器,在各种嵌入式系统设计中被广泛应用。在这个项目里,我们将探讨如何使用该款微控制器中的高级定时器(ADC)进行模拟信号采集,并通过通用同步异步收发传输器(USART1)将数据输出。 首先,我们来了解一下ADC模块的功能和配置方法。STM32F103的ADC硬件模块用于转换输入的模拟电压信号为数字值。它支持多个通道连接到微控制器的不同引脚以采集多路模拟信号。在设置过程中需要考虑采样时间、分辨率以及是否启用连续模式等因素,并选择合适的参考电压源来保证测量精度。 接下来,我们关注USART1串行通信接口的相关配置和使用方法。该模块用于设备间的全双工通讯,在项目中主要用于数据传输功能的实现。我们需要设定波特率、数据位数等参数以正确地通过USART发送或接收数据。 在实际应用中,从ADC获取的数据往往需要经过处理才能通过USART1进行传递。例如,可能要将二进制结果转换成十进制或十六进制格式以便于阅读,并添加特定的帧头和尾标志保持同步性及完整性检查机制等。 项目实施步骤包括: - 初始化:配置系统时钟以确保ADC与USART正常工作。 - 配置ADC:设置合适的通道、采样时间及其他参数,启动转换过程。 - 配置USART1:设定通信速率和其他相关选项,并启用发送接收功能。 - 数据采集和处理:定期读取并格式化数据以便于传输。 - 发送及接收操作:通过USART接口将准备好的信息发往目标设备或从其他来源接收到的数据。 项目中提供的文件通常包括示例代码、配置文档等,有助于开发者理解如何在STM32F103程序里集成ADC和USART功能。学习这些内容能够帮助提升对这款微控制器的应用能力,并应用于工业控制、环境监测等领域。掌握这项技术对于硬件开发人员来说非常关键。