Advertisement

基于改良YOLOv5的水下群体目标检测的研究与实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究致力于改进YOLOv5算法,针对复杂背景下的水下环境进行优化,有效提升水下群体目标检测的速度和精度。 水下群体目标检测在水产养殖领域具有重要意义,它对于实时监控养殖品的状态、预防疾病及精确投喂至关重要。然而,在实际的水下环境中常常遇到如目标模糊与群体遮挡等问题,这些问题严重影响了检测准确性和召回率。 本段落主要探讨了两个核心问题:一是如何通过可变形卷积提高在模糊背景下的目标检测精度;二是如何解决高密度群体间相互遮挡导致的目标漏检问题。为此,作者提出了一种名为DCM-ATM-YOLOv5的水下群体目标检测模型。 该模型基于YOLOv5进行了优化,并引入了可变形卷积模块(DCM)。通过动态调整采样点位置,可变形卷积能够更好地适应目标形状的变化和模糊背景的影响,使模型更加关注前景目标并减少背景噪声干扰。此外,为应对高密度群体遮挡导致的目标漏检问题,作者设计了自适应阈值模块(ATM),预测出适合当前场景的动态阈值以避免固定阈值造成的检测遗漏,从而提升召回率。 实验结果显示,在真实养殖鱼群数据集上使用DCM-ATM-YOLOv5模型时,其检测准确率和召回率分别达到了97.53%与98.09%,相较于现有先进水下目标检测模型有显著提高。此外,论文还研究了一种融合先验知识的改进YOLOv5模型——KAYOLO。该方法通过增强特征提取来应对模糊背景造成的特征损失,并采用预测框聚合策略解决遮挡问题。 实验数据显示,与原始YOLOv5相比,KAYOLO模型在准确率和召回率上分别提升了1.29%和1.35%,达到了94.92%及92.21%。这表明了KAYOLO方法的有效性和鲁棒性。 除了上述理论研究外,本段落还设计并实现了一个鱼群检测与计数系统。该系统能够识别多种鱼类目标,并提供直观的结果展示和数量统计功能。此外,系统内部集成了模型选择模块、参数设置模块以及输入选择模块等功能以提高用户操作便捷性和系统的适应性。 综上所述,通过改进YOLOv5模型结合可变形卷积与自适应阈值技术,本段落有效解决了水下目标检测中的关键挑战,并提高了检测准确度和召回率。同时开发的鱼群检测系统也为实际应用提供了有力支持,进一步展示了深度学习及计算机视觉技术在水产养殖领域的巨大潜力和发展前景。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • YOLOv5
    优质
    本研究致力于改进YOLOv5算法,针对复杂背景下的水下环境进行优化,有效提升水下群体目标检测的速度和精度。 水下群体目标检测在水产养殖领域具有重要意义,它对于实时监控养殖品的状态、预防疾病及精确投喂至关重要。然而,在实际的水下环境中常常遇到如目标模糊与群体遮挡等问题,这些问题严重影响了检测准确性和召回率。 本段落主要探讨了两个核心问题:一是如何通过可变形卷积提高在模糊背景下的目标检测精度;二是如何解决高密度群体间相互遮挡导致的目标漏检问题。为此,作者提出了一种名为DCM-ATM-YOLOv5的水下群体目标检测模型。 该模型基于YOLOv5进行了优化,并引入了可变形卷积模块(DCM)。通过动态调整采样点位置,可变形卷积能够更好地适应目标形状的变化和模糊背景的影响,使模型更加关注前景目标并减少背景噪声干扰。此外,为应对高密度群体遮挡导致的目标漏检问题,作者设计了自适应阈值模块(ATM),预测出适合当前场景的动态阈值以避免固定阈值造成的检测遗漏,从而提升召回率。 实验结果显示,在真实养殖鱼群数据集上使用DCM-ATM-YOLOv5模型时,其检测准确率和召回率分别达到了97.53%与98.09%,相较于现有先进水下目标检测模型有显著提高。此外,论文还研究了一种融合先验知识的改进YOLOv5模型——KAYOLO。该方法通过增强特征提取来应对模糊背景造成的特征损失,并采用预测框聚合策略解决遮挡问题。 实验数据显示,与原始YOLOv5相比,KAYOLO模型在准确率和召回率上分别提升了1.29%和1.35%,达到了94.92%及92.21%。这表明了KAYOLO方法的有效性和鲁棒性。 除了上述理论研究外,本段落还设计并实现了一个鱼群检测与计数系统。该系统能够识别多种鱼类目标,并提供直观的结果展示和数量统计功能。此外,系统内部集成了模型选择模块、参数设置模块以及输入选择模块等功能以提高用户操作便捷性和系统的适应性。 综上所述,通过改进YOLOv5模型结合可变形卷积与自适应阈值技术,本段落有效解决了水下目标检测中的关键挑战,并提高了检测准确度和召回率。同时开发的鱼群检测系统也为实际应用提供了有力支持,进一步展示了深度学习及计算机视觉技术在水产养殖领域的巨大潜力和发展前景。
  • YOLOv5模型,密度监系统
    优质
    本项目采用改进型YOLOv5算法构建高效的人群密度监测系统,能够精确识别与计数图像中的个体,为公共安全和智慧城市应用提供关键数据支持。 标题中的“基于改进后的YOLOv5目标检测模型实现人群密度检测系统”指的是利用了YOLOv5这一深度学习框架的最新优化版本来构建一个能够计算并分析人群密度的系统。YOLO(You Only Look Once)是一种实时的目标检测算法,以其高效和准确而闻名。YOLOv5是该系列的最新迭代,在速度和精度上进行了显著提升,尤其适合处理视频流和实时监控数据,如用于人群密度估计。 目标检测是计算机视觉领域的一个核心任务,其目的是识别并定位图像或视频中的特定对象。在YOLOv5中,这一过程通过神经网络完成,该网络预测边界框(bounding boxes)以及与之对应的类别概率。对于人群密度检测而言,目标是估算特定区域内的人数,这通常涉及将个体视为密集像素簇,并利用密度地图来量化。 YOLOv5的改进主要体现在以下几个方面: 1. **网络架构优化**:采用了更高效的卷积层结构,如SPP-Block(空间金字塔池化)和Path Aggregation Network(PANet),这些设计有助于捕捉不同尺度的目标。 2. **数据增强技术**:使用了随机翻转、缩放、裁剪等方法来提高模型的泛化能力。 3. **Loss函数改进**:采用了更先进的损失函数,如CIoU(完全IoU),以提升边界框定位精度。 4. **训练策略优化**:应用Mosaic数据增强和MixUp技术进一步提升了性能。 5. **权重初始化方法**:预训练权重的使用加速了模型训练过程,并提高了最终精度。 人群密度检测系统基于YOLOv5可能包括以下步骤: 1. **图像预处理**:调整输入图片大小以符合模型要求,同时进行光照、对比度等校正。 2. **目标检测**:运行YOLOv5模型对每个人在图中定位并生成边界框。 3. **密度估计**:利用每个边界的中心点信息创建热力图或高斯核来量化人群分布情况。 4. **计数算法**:通过对密度地图的积分或阈值处理,计算出区域内的总人数。 5. **后处理步骤**:可能需要合并重叠边界框以避免重复计数。 这种系统在公共场所安全管理、人流量监控和灾难响应等领域具有广泛的应用。例如,通过实时分析摄像头视频流可以及时发现人群聚集情况并提供预警信号。然而,实际应用中面临挑战如遮挡问题、视角变化及光照条件的影响等,因此可能需要结合其他技术(比如多视角融合或3D重建)以提高检测准确性和鲁棒性。
  • YOLOv5模型高速公路裂缝.docx
    优质
    本文档探讨了在高速公路维护领域应用改进版YOLOv5模型进行裂缝检测的研究。通过优化算法和参数调整,提高了裂缝识别的速度与精度,为智能道路养护提供了高效解决方案。 本科毕业论文《基于改进YOLOv5模型的高速道路裂缝检测研究》目录如下: 第一章 引言 1.1 研究背景 1.2 研究目的 1.3 研究内容 1.4 论文结构 第二章 相关技术综述 2.1 YOLOv5模型原理 2.2 高速道路裂缝检测方法 2.3 改进YOLOv5模型 第三章 数据集和实验设计 3.1 数据集介绍 3.2 实验设置 第四章 改进YOLOv5模型 4.1 模型架构设计 4.2 数据预处理 第五章 实验与结果分析 5.1 实验结果 5.2 结果对比与讨论 第六章 结论与展望 6.1 研究结论 6.2 研究展望
  • YOLO及迁移学习鱼类.pdf
    优质
    本文探讨了一种结合改进型YOLO算法与迁移学习技术的方法,用于实现水下环境中鱼类目标的高效、准确实时检测。通过优化模型参数和利用预训练网络的知识迁移能力,该研究在复杂背景下的鱼类识别任务中取得了显著成效,为海洋生物监测提供了新的技术支持。 这篇期刊文章探讨了基于改进YOLO算法和迁移学习的水下鱼类目标实时检测技术。该研究在目标检测领域具有重要的实践意义。
  • YOLOV5-seg例分割
    优质
    本研究采用YOLOV5-seg模型进行高效的目标检测和实例分割任务,实现在复杂场景下的精准识别与快速处理。 YOLOV5-seg实现了实例分割和目标检测任务。
  • YOLOv5脑瘤方法
    优质
    本研究提出了一种改进的YOLOv5模型用于脑瘤检测,通过优化网络结构和训练策略,提高了模型在医疗影像中的目标定位与分类精度。 这篇文章发表在MDPI期刊上,内容涉及结合NLNN与YOLOv5进行脑肿瘤检测的研究(侧重于检测而非分类或分割)。文中详细介绍了数据集的来源及其处理方法,可供读者了解相关背景信息以及如何运用YOLO技术来检测脑瘤。此外,文章中提到的NLNN具有一定的创新性,类似于简化版自注意力机制,建议寻找相关的代码进行参考研究。
  • Yolov5手部.zip
    优质
    本项目采用YOLOv5框架实现手部目标检测,旨在提高手势识别与交互系统的准确性及实时性。包含模型训练、测试和应用部署。 《使用YOLOv5进行手部目标检测的深度学习实践》 YOLO(You Only Look Once)是一种基于深度学习的实时目标检测系统,其设计理念是快速而准确地定位图像中的物体。作为YOLO系列最新版本的YOLOv5,在速度和精度上都达到了业界领先水平。本段落将详细介绍如何利用YOLOv5进行手部目标检测,以满足人脸识别、手势识别等应用场景的需求。 一、YOLOv5简介 由Joseph Redmon及其团队开发的YOLOv5采用PyTorch框架实现。该模型的核心优势在于其高效的检测速度和高精度的检测结果。通过改进网络结构、损失函数以及训练策略,实现了更快的收敛速度和更好的泛化能力。在手部目标检测中,这些特性尤为重要。 二、手部目标检测挑战 与一般物体相比,手部目标检测更具挑战性: 1. 手部形状多样:不同姿态的手形各异。 2. 高度遮挡:手部常与其他物体或身体部位重叠,增加识别难度。 3. 角度变化:从正面、侧面到各种扭曲角度都有可能遇到。 4. 细节丰富:手指关节和皮肤纹理等细节需要精确检测。 三、YOLOv5在手部目标检测的应用 1. 数据集准备:需用包含大量标注的手部图像数据集。常用的数据集如EgoHands、HandNet、MVHand,涵盖各种姿态背景与光照条件。 2. 模型训练:自定义类别后使用预训练模型作为起点进行微调。关键参数包括学习率、批大小和轮数需根据实际情况调整。 3. 模型优化: - 数据增强:通过旋转、缩放等操作增加数据多样性,提高适应性; - 网络结构调整:可能需要更改backbone以提升精度; - 损失函数改进:加入IoU损失改善边界框预测。 4. 评估与部署:使用验证集评估模型性能并选择最佳版本进行应用。在实际场景中可将模型集成至嵌入式设备或服务器,实现实时检测功能。 四、总结 利用YOLOv5技术可以有效解决手部目标检测中的挑战,并实现高效准确的识别效果。通过深入了解其工作原理及采取针对性的数据集定制与优化策略,能够构建出适用于各种场景的手部检测系统,在人工智能领域推动手势识别和人机交互等应用的发展。
  • PyTorch框架YOLOv5面漂浮物识别.Zip
    优质
    本项目采用PyTorch框架下的YOLOv5模型,致力于提升水面漂浮物的检测和识别精度,为水体环境监控提供技术支持。 水面垃圾数据集资源包括:通过数据增强制作的数据、自建的数据以及网上获取的已开源与未开源的数据集。从中选取几千张图像,并利用这些图像进行标注以生成YOLO和VOC格式的标签文件;此外,还包含用于处理测试、训练及验证数据集的Python脚本段落件。该资源涵盖了不同格式的数据集,包括原始训练数据及其相应的标记好的标签文件。 此数据集适用于研究目标检测与分割领域,并特别针对水面漂浮物和垃圾识别的应用场景设计。它可结合机器人及相关硬件设施使用,实现软件与硬件的有效整合。 除了YOLO模型外,该资源同样适合于MaskRCNN、Fast以及Faster R-CNN等其他深度学习框架的训练需求,使用者可根据具体需要调整代码以适应不同模型的数据集加载要求。
  • Yolov5和PyQt5系统
    优质
    本项目开发了一个结合Yolov5与PyQt5技术的水果目标检测系统,旨在实现高效、准确地识别图像中的各类水果。通过深度学习模型优化及用户界面设计提升用户体验。 基于YOLOv5与PyQt5实现的水果目标检测系统。
  • YOLOv8火灾系统
    优质
    本项目研发了一种改进型YOLOv8算法的火灾目标检测系统,有效提升了火情识别的速度与精度,为消防安全提供可靠的技术保障。 ### 基于改进YOLOv8的火灾目标检测系统 #### 一、引言 随着人工智能技术的发展,目标检测已成为计算机视觉领域的重要研究方向之一。火灾作为一种突发性灾害,其早期发现对于减少人员伤亡和财产损失至关重要。然而,由于火灾初期的烟雾形态多变且火焰体积较小,传统目标检测算法往往难以实现高效准确的识别。因此,研发一种能够快速准确地检测火灾初期现象的技术变得尤为关键。 #### 二、YOLOv8概述 YOLO(You Only Look Once)是一种高效的实时目标检测框架,以其速度快、精度高而闻名。作为该系列的最新版本,YOLOv8继承了前代的优点,并进一步优化了网络结构,在保持高速的同时提高了检测准确性。然而,在特定场景下,如火灾初期的复杂环境,YOLOv8仍然存在一定的局限性。 #### 三、改进方案 为了解决YOLOv8在火灾目标检测中的不足,研究人员提出了一种改进方案: 1. **BotNet结构的加入**: - 目的:提高网络对火灾特征的提取能力。 - 实现方式:在YOLOv8的骨干网络末端加入BotNet结构。BotNet是一种基于注意力机制的模块,能够有效捕捉图像中的长距离依赖关系,从而增强网络对细节特征的学习能力。 - 效果:通过BotNet的引入,增强了模型对火灾初期细微特征的感知能力,提高了检测精度。 2. **EMA(Exponential Moving Average)注意力机制的应用**: - 目的:稳定训练过程,防止权重更新时出现剧烈波动。 - 实现方式:在YOLOv8头部末端引入EMA机制。EMA是一种动态调整参数的方法,通过对历史权重进行加权平均来平滑模型的训练过程,降低过拟合风险。 - 效果:EMA机制的应用有助于提高模型的泛化能力,确保模型在不同场景下的稳定性。 #### 四、实验结果 为了验证改进后的YOLOv8模型的有效性,研究人员进行了大量的实验。实验结果显示: - **平均精度(mAP)提高2.3%**:这意味着整体检测准确率得到了显著改善。 - **火灾预测准确率提升1.4%**:证明了模型对火灾目标的识别能力加强。 - **烟雾预测准确率提升1%**:进一步证实改进措施对于捕捉火灾初期迹象的有效性。 这些结果共同说明,通过引入BotNet结构和EMA机制,改进后的YOLOv8模型不仅能够更精确地检测到火灾初期特征,并且保持较高的速度,非常适合应用于实际的火灾预警系统中。 #### 五、结论 基于改进YOLOv8的火灾目标检测系统在原有模型基础上加入BotNet结构和EMA注意力机制,有效解决了现有算法在复杂环境下识别效率低的问题。实验表明,在多个关键指标上有所提升,能够更好地满足实时监测的需求。这一成果为未来开发更高效可靠的火灾预警技术提供了有力支持。