Advertisement

稀疏矩阵是一种存储和处理数据的方式,它只存储非零元素,从而减少内存占用和计算复杂度。这种数据结构特别适用于那些包含大量零的数值数据集。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
完成矩阵的存储与运算功能;并进一步实现针对特殊矩阵的压缩存储技术方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C++对称压缩
    优质
    本文章探讨了在C++编程语言中如何高效地使用压缩存储技术来处理对称矩阵和稀疏矩阵。通过引入特定的数据结构,可以有效地减少内存占用并优化算法性能,尤其适用于大规模数据集的处理场景。 对称矩阵和稀疏矩阵是数据结构中的两个重要概念。对称矩阵是指一个矩阵与其转置相等的矩阵;而稀疏矩阵则是指非零元素数量远少于总元素数目的矩阵。 压缩存储技术通过利用这些特殊类型的特性来减少所需的存储空间,从而提高效率。对于对称矩阵而言,由于其上下三角部分数据相同,我们可以只保存其中一半的数据(上或下),以节省内存资源。而对于稀疏矩阵,则可以采用三元组表示法:将非零元素及其所在行列号存入一个数组中。 在C++语言里实现稀疏矩阵的压缩存储时,模板类提供了一种灵活且高效的方法来处理各种类型的数据。下面是一个简单的示例代码: ```cpp template struct Triple { size_t _r; // 行索引 size_t _c; // 列索引 T _value; Triple(size_t row = 0, size_t col = 0, const T& value = T()) : _r(row), _c(col), _value(value) {} }; template class SparseMatrix { public: SparseMatrix() : _row(0), _col(0), _illegal(T()) {} SparseMatrix(T* arr, size_t row, size_t col, const T& illegal) : _row(row), _col(col), _illegal(illegal) { for (size_t i = 0; i < row; ++i) { for (size_t j = 0; j < col; ++j) { if (arr[i * col + j] != illegal) _matrix.push_back(Triple(i, j, arr[i * col + j])); } } } void Display() const { vector >::const_iterator iter = _matrix.begin(); for (size_t i = 0; i < _row; ++i) { for (size_t j = 0; j < _col; ++j) { if ((iter != _matrix.end() && iter->_r == i && iter->_c == j)) { cout << iter->_value << \t; ++iter; } else { cout << _illegal << \t; } } cout << endl; } cout << endl; } SparseMatrix Transpose() const { SparseMatrix tm; tm._row = _col; tm._col = _row; tm._illegal = _illegal; for (size_t i = 0; i < _matrix.size(); ++i) { Triple& tref = _matrix[i]; if (!tm.Contains(tref)) tm.Add(Triple(tref._c, tref._r, tref._value)); } return tm; } private: size_t _row; // 行数 size_t _col; // 列数 T _illegal; // 非法值(用于表示零元素) vector > _matrix; }; ``` 该代码定义了一个`SparseMatrix`模板类,它使用三元组来存储稀疏矩阵中的非零项,并提供了显示和转置操作的方法。
  • 优质
    本项目专注于设计高效的数据收集与存储解决方案,旨在优化信息管理流程,确保数据安全性和可访问性,支持大数据分析需求。 数据采集与存储解决方案针对需要在偏远或恶劣环境下进行实时数据监测的场景而设计,常用于科学研究、环境监测及工业自动化等领域。本段落档将探讨如何利用ARM处理器平台上的ucOSII实现此类系统。 1.2 功能描述: 该系统的目的是高效且稳定地采集和安全存储数据。其主要功能包括: - 实时性:不间断地收集环境参数(如温度、湿度、气压等),并实时处理及保存。 - 自动化:无需人工干预,自动进行记录与储存。 - 可靠性:即使在恶劣环境下也能保持稳定运行,并确保数据的完整性。 - 扩展性:支持多种传感器接入,适应不同应用场景。 1.2.2 性能指标: 包括但不限于以下方面: - 数据采集频率可调(从几赫兹到几百赫兹)以满足具体需求; - 利用SD卡作为存储介质提供大容量空间; - 低功耗设计延长电池寿命; - 具备良好抗电磁干扰能力。 1.3 可行性分析: 采用ucOSII嵌入式操作系统,因其轻量级及实时性强的特点,在资源有限的ARM平台上运行表现优异。 应用的技术包括: - ARM处理器:提供强大的计算能力和低功耗特性。 - UCOSII:作为实时操作系统,负责任务调度和中断管理以确保数据采集的及时性。 - ADC(模数转换器):用于将传感器信号转化为数字信号; - SD卡接口实现大量数据存储;以及 - 通信模块可能包括无线技术如GPRS、LoRa或WiFi等。 1.4 总体设计: 硬件部分主要包括ARM微控制器、ADC模块、SD卡接口、电源管理和通信模块。其中,微控制器作为系统的核心负责协调所有组件运行;而ADC用于将模拟信号转换为数字形式;SD卡接口则用于数据存储;电源管理确保系统的持久运行能力;最后,通过通信模块提供远程访问和传输的可能。 软件部分主要由ucOSII内核、设备驱动程序(使微控制器能够控制硬件)、定时执行的数据采集任务以保存收集到的信息以及优化数据储存效率的程序构成。此外还有实现远程数据交换功能的协议栈等组件。 1.5 测试结果: 测试证明了系统的完备性及其在各种条件下的性能指标达标和稳定性,例如成功地实现了无丢失或错误的数据存储与获取。 1.6 总结 该方案通过结合ucOSII实时操作系统特性,在ARM平台上的数据采集及储存解决方案得以实现。这使得系统能够在恶劣环境下稳定运行并满足野外实时数据收集的需求。 此外,附录部分通常包含详细的设计图纸、源代码片段以及测试报告等资料供进一步研究和参考。 综上所述,在ARM平台上实施的数据采集与存储不仅是一项技术挑战,更是一个涉及硬件选择、软件设计及系统集成的综合工程。此类系统的应用对于提高环境监测效率和准确性具有重要意义。
  • 、文档源码
    优质
    本项目专注于大稀疏矩阵的高效处理技术,涵盖其优化存储方案、详细文档说明以及完整源代码,为数据科学与机器学习领域提供强大支持。 大稀疏矩阵的存储格式包括DIA(对角非零元素)、ELLPACK、COO、CSR、HYB(ELLPACK+COO)、DOK(基于映射)和LIL(基于列表)等多种方式,每种方法都有其适用场景。没有一种格式在所有情况下都占据绝对优势,选择时需根据具体需求来决定。此外,还有四元树等其他存储策略可供探索使用。有兴趣的朋友可以继续交流讨论相关话题。
  • 过程中库生成JSON
    优质
    本文章介绍了在存储过程内部生成及保存JSON格式数据于数据库中的方法。探讨了如何高效利用SQL语句实现复杂的数据结构操作。 在存储过程中根据指定的表和列生成JSON。
  • 常见顺序——资料
    优质
    本文介绍并对比了两种常见的顺序存储方式,旨在帮助读者理解数据结构中如何有效组织和管理数据。通过详细说明每种方法的特点、应用场景及其优缺点,为学习者提供实用的数据处理思路与技巧。 通常有两种顺序存储方式: 1. 行优先顺序(Row Major Order):数组元素按行排列,第i+1个行向量紧接在第i个行向量后面。对于二维数组而言,按照这种顺序存储时的线性序列为: a11, a12,...,a1n, a21,a22,...a2n ,..., am1,am2,...,amn PASCAL和C语言采用的是行优先顺序存储方式。 2. 列优先顺序(Column Major Order):数组元素按列向量排列,第j+1个列向量紧接在第j个列向量之后。对于二维数组而言,按照这种顺序存储时的线性序列为: a11, a21,...,am1, a12,a22...,am2 ,..., an1,an2,...,anm FORTRAN语言采用的是列优先顺序存储方式。
  • 优质
    稀疏矩阵是指非零元素较少且分布不均的矩阵。其数据结构设计旨在高效存储和运算这些非零值,减少空间占用并加速计算过程,常用方法包括三元组表示法、链式存储法等。 实现矩阵的存储及运算;实现特殊矩阵的压缩存储方法。
  • 在 MATLAB 中以
    优质
    本教程介绍如何在MATLAB中高效地使用矩阵来组织和操作数据,包括创建、访问及修改矩阵元素的方法。 在 MATLAB 中,可以将工作空间中的某一变量的数据保存为矩阵形式。
  • Python温湿
    优质
    本项目详细介绍如何使用Python进行温湿度数据采集,并对数据进行预处理和清洗,最后将处理后的数据存入数据库中。 使用Python远程采集数据并进行处理,然后将其写入自己的数据库。所用技术包括Python、pymysql等。
  • HBase微博优化
    优质
    本研究提出了一种针对HBase平台上的微博大数据存储与查询效率优化策略,旨在有效处理海量非结构化信息。通过改进分区机制和索引技术,显著提升了系统的读写性能和扩展能力。 随着网络技术的迅速发展,互联网用户数量大幅增长,并产生了海量的数据。据不完全统计,截至2012年12月底,新浪微博注册用户数已超过5亿,每天微博用户的发博量超过了1亿条。由于微博使用人群基数大、信息更新频繁且传播速度快,这为研究网络用户行为和心理提供了丰富的资源,同时也带来了相应的挑战。
  • C语言中类型
    优质
    本文介绍了C语言中不同数据类型在内存中的存储方式和特点,帮助读者深入理解变量在计算机内部的具体表示方法。 C语言中的数据类型在内存中的存储是计算机科学的基础知识之一,它涉及到如何表示和处理各种不同类型的数据。 基本数据类型包括布尔型(bool)、字符型(char)、整数型(如short、int、long)以及浮点型(float、double)。其中,布尔类型的大小一般为一个字节。尽管理论上只需一位即可区分真或假的状态,但为了适应内存对齐的要求,在实际实现中通常使用了一个完整的字节。 字符类型的数据占用同样是一个字节,并能表示256种不同的值。这依赖于所使用的编码方案(如ASCII码),每个字符都有一个对应的二进制数,例如A的ASCII值为65,其二进制形式是01000001。 对于整型数据类型而言,它们根据存储容量的不同被分为short、int和long等。其中short通常占用2个字节(即16位),而int则通常是4个字节(32位)。至于long的大小,则可能因操作系统或编译器的具体实现不同而有所差异。整数在内存中以补码形式存储,这意味着正数直接使用原码表示,负数则是其反码加一后的结果。 浮点型数据类型用于处理包含小数部分的数据,并且遵循IEEE 754标准进行编码。具体而言,float占用4个字节(32位),其中包括一位符号、八位指数和二十三位尾数;而double则占据8个字节(64位)的空间,包括一位的符号位置、十一位的指数部分以及五十二位的小数值。 在C语言编程实践中,理解不同类型数据如何存储于内存中对于正确处理类型转换特别重要。例如,在将char类型的值赋给short时,只会复制低8位到目标变量;而当从short向int进行赋值操作,则仅会保留其16个低位比特,并填充剩余高位为零。 此外,掌握不同类型数据的存储方式还有助于理解指针和内存管理的相关概念。通过深入了解这些底层机制,程序员可以编写出更高效且稳定的代码。