Advertisement

水面无人艇的系统建模、轨迹跟踪及PID控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了水面无人艇系统的建立与模拟,并深入分析了其轨迹跟踪技术以及基于PID(比例-积分-微分)控制器优化航行路径的方法。通过仿真试验验证,改进后的PID控制策略显著提升了无人艇的动态响应性能和稳定性,在复杂水域环境中的任务执行能力得到增强。 首先利用Matlab对无人艇的运动学和动力学子系统进行数字建模,并采用四阶龙格-库塔法求解AUV微分方程,以获取系统的状态信息。接下来根据所得到的状态数据及期望航迹设计PID控制器,并将其输入到系统模型中,使无人艇在该控制策略的作用下能够准确跟踪预定轨迹。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PID
    优质
    本研究探讨了水面无人艇系统的建立与模拟,并深入分析了其轨迹跟踪技术以及基于PID(比例-积分-微分)控制器优化航行路径的方法。通过仿真试验验证,改进后的PID控制策略显著提升了无人艇的动态响应性能和稳定性,在复杂水域环境中的任务执行能力得到增强。 首先利用Matlab对无人艇的运动学和动力学子系统进行数字建模,并采用四阶龙格-库塔法求解AUV微分方程,以获取系统的状态信息。接下来根据所得到的状态数据及期望航迹设计PID控制器,并将其输入到系统模型中,使无人艇在该控制策略的作用下能够准确跟踪预定轨迹。
  • 基于LOS航行规划与路径思考_own3oh_
    优质
    本文探讨了基于LOS(Leading-Orthogonal Spiral)算法的无人水面艇航行轨迹规划及路径跟踪方法,分析其在复杂海洋环境中的应用优势和挑战。通过理论研究与仿真试验,提出改进措施以提高无人艇自主导航精度和稳定性。适合从事水上机器人技术相关领域的研究人员参考。 控制无人水面艇沿规划好的轨迹航行,并跟随期望值。
  • :应用于
    优质
    本研究聚焦于开发适用于无人船的高效能轨迹跟踪控制技术,旨在实现船舶自主航行时的高精度路径跟随和动态调整能力。 TrajectoryControl用于无人船的轨迹跟踪控制,在基于Matlab的验证数学模型中使用了两轮差速的小车模型。在Trajectory and Control.m文件中的代码主要通过PID环节对航向角进行控制,使小车朝目标前进。而在trajectory(两个闭环).m文件中,则是利用PID环节同时对航向角和距离进行控制,以引导小车到达目的地(效果很好)。我会设定小车的起点坐标为x=2, y=1, theta=pi/6以及终点限制在x=10, y=10;同样地,也可以设置起点为x=2, y=1, theta=pi/2,并将终点设于相同的x和y值。这样可以得到两个不同的轨迹图(仅通过修改航向角theta)。
  • 基于LOS路径规划_源码.rar
    优质
    本资源为基于LOS算法的无人水面艇路径跟踪与轨迹规划代码集合,适用于学术研究和工程实践中的船舶自主导航系统开发。 Thinking_轨迹规划_航行轨迹_基于LOS无人水面艇的路径跟踪_own3oh_水面无人艇_源码.rar 这段文字描述的是一个关于无人水面艇路径跟踪的文件,包含有关于LOS(Line of Sight)方法下的轨迹规划和航行轨迹的相关内容。
  • chap2.rar_滑_滑__滑方法
    优质
    本资源为chap2.rar,包含有关滑模轨迹及轨迹跟踪控制的研究内容,重点介绍了滑模方法在实现精确轨迹跟踪中的应用。 基于滑模控制的机器人的轨迹跟踪控制仿真实验研究
  • 基于PID四旋翼仿真优化
    优质
    本研究探讨了利用PID(比例-积分-微分)控制器实现四旋翼无人机精确轨迹跟踪的方法,并通过仿真实验进行了性能优化。 0. 直接运行simulink仿真文件.slx。 1. 如果在执行过程中遇到警告或错误提示指出某些文件或变量无法识别,请尝试将包含所需文件的整个文件夹添加到MATLAB搜索路径中,或者直接进入该最内层子目录下进行程序运行操作。 2. 若要移除Simulink模块上的封面图(即使用了封装技术),可以右键点击目标模块选择“Mask”,然后在弹出窗口中选“Edit Mask”并单击左下方的“(Unmask)”按钮来取消封套显示效果。 3. 为了提高仿真执行速度,可以通过调整S-Function采样间隔或利用To Workspace模块将所有数据导至工作空间,并使用脚本段落件绘制动态变化过程图示来进行优化处理。 4. 当改变系统初始位置和参考轨迹后仍无法实现良好跟踪性能时,则需重新校准PID参数。通常情况下,建议首先调整高度(z轴)方向上的PID设置,随后再依次针对水平平面内(x, y)的定位进行相应调节;遵循由内部环路至外部闭环逐步优化的原则。 5. 若要执行初始化文件quadrotor_params.m中的内容,在仿真模型中找到空白区域右键点击选择“Model properties”,接着在弹出菜单里导航到“Callbacks”选项卡下的InitFcn设置项即可。
  • 基于型预测欠驱动
    优质
    本研究提出了一种基于模型预测控制(MPC)的方法,用于设计欠驱动水面舰艇的轨迹跟踪控制器。通过优化算法实时调整航行路径,确保舰艇高效准确地遵循预定路线,适用于复杂海况下的自主导航任务。 基于模型预测控制的欠驱动水面舰艇轨迹跟踪控制器设计了一种用于提升欠驱动水面舰艇性能的方法,该方法利用了模型预测控制技术来实现精确的轨迹跟踪。这种方法能够有效解决传统控制系统在面对复杂动态环境时遇到的问题,提高系统的响应速度和稳定性。
  • 横向改进驾驶车辆
    优质
    本研究探讨了针对无人驾驶车辆的横向控制策略优化,并提出了一种新的方法来提高其路径追踪精度和稳定性。通过算法改进,增强了车辆在复杂路况下的适应性和安全性,为实现更高级别的自动驾驶技术奠定了基础。 在现代汽车技术领域,无人驾驶车辆的研发与应用已成为热门话题。“横向控制改_automobile_轨迹跟踪_vehicle_无人驾驶轨迹_无人驾驶车辆”这一标题涉及到的核心概念是无人驾驶车辆的横向控制和轨迹跟踪,在无人驾驶系统中至关重要。 横向控制是无人驾驶车辆自主导航的关键组成部分,主要负责方向控制,确保车辆能够沿着预定路径行驶。这通常基于模型预测控制(Model Predictive Control, MPC),一种先进的理论方法,通过预测未来行为并优化输入来实现精确控制。 在无人驾驶中的应用上,MPC通过建立动力学模型、预测未来一段时间内车辆的行为,并根据预设目标如轨迹跟踪进行决策优化。控制器不断更新和调整输入以最小化误差,从而达到最佳的路径追踪效果。 轨迹跟踪则是要求无人驾驶车辆准确无误地按照预定路线行驶。这需要高精度定位与导航能力,通常结合GPS、LiDAR及摄像头等传感器数据实现实时修正和追踪。 “automobile”、“vehicle”指代的是无人驾驶汽车,“无人驾驶轨迹”则指的是行驶过程中需遵循的路径。通过使用高精地图、视觉感知以及多传感器融合技术,车辆能够识别并理解周围环境,并对其位置与目标路线做出精确判断。 在“横向控制改”的语境下,则可能意味着对现有策略进行优化或改进以提升操控性能和稳定性。这包括但不限于预测模型的调整及控制器参数的优化适应不同路况条件。 提到压缩包内的“横向控制”文件,可能是包含相关研究论文、代码实现、实验数据或者详细说明文档等资料,深入探讨无人驾驶车辆横向控制的具体方法和技术细节,对于理解该技术具有重要参考价值。 综上所述,无人驾驶汽车中的横向控制和轨迹跟踪是确保安全高效驾驶的关键。通过进一步研究与实践MPC理论及其应用,我们期待未来交通系统中无人驾驶汽车发挥更大作用。