Advertisement

交错并联Buck变换器仿真研究 输入电压范围:36~70V,输出电压:28.5V,采用电压电流双闭环PI控制,使用DSP单片机芯片

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本文探讨了一种交错并联Buck变换器的仿真研究,输入电压为36至70伏特,固定输出28.5伏特。通过应用电压和电流双重闭环比例积分(PI)控制器,并采用DSP(数字信号处理)单片机芯片实现高效稳定的电力转换。 对于一个交错并联BUCK变器的仿真项目,输入电压范围设定为36至70伏特;输出电压固定在28.5伏特;控制策略采用的是电压电流双闭环PI调节方式。 硬件方面使用了单片机dsPIC33FJ32MC204作为核心控制器。仿真实验是在proteus 8.9平台上进行,代码编写则通过MPLAB X IDE完成。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Buck仿 36~70V28.5VPI使DSP
    优质
    本文探讨了一种交错并联Buck变换器的仿真研究,输入电压为36至70伏特,固定输出28.5伏特。通过应用电压和电流双重闭环比例积分(PI)控制器,并采用DSP(数字信号处理)单片机芯片实现高效稳定的电力转换。 对于一个交错并联BUCK变器的仿真项目,输入电压范围设定为36至70伏特;输出电压固定在28.5伏特;控制策略采用的是电压电流双闭环PI调节方式。 硬件方面使用了单片机dsPIC33FJ32MC204作为核心控制器。仿真实验是在proteus 8.9平台上进行,代码编写则通过MPLAB X IDE完成。
  • BuckPI
    优质
    本研究探讨了一种基于双闭环控制策略的Buck变换器设计,特别关注于采用PI控制器实现精确的电流和电压调节。通过优化内外环参数,该方法有效提升了系统的动态响应与稳态精度,适用于广泛电源管理应用中高效、稳定的电力转换需求。 Buck双闭环控制包括内环电流环和外环电压环,构成一个完整的双闭环控制仿真模型。
  • 基于buck-boost向DC-DC仿为直源,连接至蓄池)
    优质
    本文探讨了采用电压外环和电流内环双闭环控制策略下的Buck-Boost双向DC-DC变换器,在输入为直流电压源且输出负载为电池的条件下进行仿真分析。 非隔离双向DC-DC变换器(buck-boost变换器)采用电压外环电流内环的双闭环控制方式,在正向运行时实现直流电压源给电池恒流恒压充电,反向运行时则通过电池放电来维持直流侧电压稳定。在MATLAB Simulink中建立仿真模型,输入端为直流电压源,输出端连接蓄电池模型。
  • Buck的PWM仿模型,涵盖开
    优质
    本研究构建了三电平Buck变换器的PWM控制仿真模型,详细分析了开环和基于输出电压以及电压电流双闭环的反馈控制系统特性。 三电平Buck变换器仿真模型采用PWM控制方式,包括开环控制和闭环控制两种模式。其中闭环控制又分为输出电压闭环和输出电压电流双闭环两种方式。该模型既包含单向结构也涵盖双向结构,请在联系时注明所需的具体结构类型。此外,相关运行环境文件适用于MATLAB Simulink及PLECS等平台。
  • 2019.1.5基于PI相逆DSP仿.rar
    优质
    本研究探讨了在单相逆变器中采用DSP技术实现电流电压双闭环PI控制的方法,并进行了仿真实验,以验证其性能和稳定性。 基于DSP的单相全桥逆变电路仿真设计及实用程序开发
  • 基于STM32的三相型SVPWM整仿PID),达600V
    优质
    本研究利用STM32平台探讨了三相电压型SVPWM整流器,通过实施双闭环PID控制系统(包括电压外部回路和电流内部回路)实现了高达600伏的稳定输出电压。 在现代电力电子技术领域,三相电压型SVPWM(空间矢量脉宽调制)整流器已成为关键组件之一,在高电压大功率应用中具有广泛应用前景。STM32是一种广泛使用的32位微控制器,具备丰富的外设接口和强大的处理性能,非常适合实现复杂的控制算法。 本段落将详细介绍基于STM32控制器的三相电压型SVPWM整流器仿真设计,并采用双闭环PID控制策略来确保输出电压稳定在600V或800V。此外,该系统还具备单位功率因数运行能力及变负载仿真实验功能。 空间矢量脉宽调制技术是三相电压型SVPWM整流器的核心所在,通过调整脉冲宽度和优化开关频率来减少谐波、提高效率并加快响应速度。在本次仿真中,采用精确的SVPWM控制策略对输出电压与电流进行精细调节。 双闭环PID控制系统是此次仿真实验的关键部分,在该系统中,电压外环负责维持稳定的输出电压,而电流内环则通过调整PWM信号来保证电压环的精度和稳定性。这种分层控制方式不仅提高了系统的动态性能,还确保了在负载变化时仍能保持良好的稳定性和响应能力。 仿真设计过程中,STM32控制器利用其丰富的接口与SVPWM整流电路连接,并通过内部PID算法调节PWM占空比以实现实时控制。此外,系统支持用户自定义输出电压至800V,满足不同应用场景的需求。 报告还详细介绍了三相全控单极性桥式整流电路的设计及仿真过程。该设计采用六个可控硅作为开关器件,并通过软件精确调控其通断状态来完成整流功能。与传统二极管整流相比,这种可控硅整流方案具有更好的可调节性和更佳的电力参数控制能力。 在仿真实验中,我们深入分析并验证了电压外环和电流内环PID参数的有效性,并通过实验数据展示了双闭环控制系统的优势。此外,还探讨了随着技术进步如何优化三相电压型SVPWM整流器的设计以适应新的应用需求。 本段落包含多个仿真波形图来直观展示系统在不同条件下的性能表现,帮助理解系统的动态响应特性和稳定状态特性。通过这些研究成果,我们为开发高性能电力电子设备提供了重要的参考依据和实践经验。
  • 基于Matlab Simulink的相逆仿PI、LC滤波及SPWM调下的分析
    优质
    本研究运用MATLAB Simulink平台,探讨了在电压和电流双闭环PI控制策略下,结合LC滤波与SPWM调制技术的单相逆变器模型。通过详尽仿真,本文深入分析了该配置下的交流电压输出特性及优化方案。 本段落介绍了一个基于Matlab Simulink的单相逆变器仿真模型,该模型采用了电压电流双闭环PI控制策略,并结合了LC滤波与SPWM调制技术。通过这些设计,输出交流电为220V 50Hz的标准规格。图中展示了模型在运行时产生的电压、电流和功率等关键参数的动态变化曲线。 核心关键词包括:单相逆变器仿真模型;双闭环PI控制策略(即电压与电流双重反馈回路);LC滤波器的应用及其对信号处理的作用;SPWM调制技术的特点及优势;输出交流电的具体规格为220V和50Hz频率。此外,文中还提到了Matlab Simulink仿真软件平台在构建上述模型中的重要角色以及通过它观察到的各种电气量的时域波形表现形式。
  • 相PWM整仿模型——基于相全桥结构,PI为220V/50Hz可调节
    优质
    本项目构建了单相PWM整流器的仿真模型,基于单相全桥电路,使用电压与电流的PI双环调控策略,适应220V/50Hz交流输入,并支持输出直流电压灵活调整。 单相PWM整流器仿真模型采用单相全桥结构,并使用电压电流PI双闭环控制来调节输出直流电压。输入交流电源为220V、50Hz,输出直流电压可调。该模型在MATLAB Simulink环境中实现。
  • 三相PWM整仿:基于,以为外系统仿
    优质
    本研究探讨了三相PWM整流器在电压与电流双重闭环控制下的性能优化,并以外部直流电压作为主要调控目标进行系统仿真实验。 三相PWM整流器闭环仿真采用电压电流双闭环控制策略,其中输出直流电压作为外环模型的一部分。该模型包括主电路、坐标变换、电压电流双环PI控制器以及SVPWM(空间矢量脉宽调制)控制和PWM发生器的MATLAB/Simulink实现。具体来说,在三相六开关七段式的SVPWM仿真中,交-直-交变压变频器中的逆变部分通常采用三相桥式电路结构来提供所需的三相交流变频电源。SVPWM控制方法依据电机负载需求生成圆形旋转磁场以驱动电机旋转,并通过合成电压空间矢量产生IGBT触发信号。与SPWM方式相比,该技术的直流电压利用率提高了约15%。