本PDF文档详细介绍了BA(Bundle Adjustment)算法中关键的数学工具——雅可比矩阵的推导过程,内容涵盖必要的线性代数和优化理论知识。适合研究计算机视觉与机器人技术的专业人士参考学习。
在计算机视觉领域,三维点的二维图像投影是通过相机模型实现的,并且雅可比矩阵(Jacobian Matrix)在此过程中扮演着关键角色,用于描述局部变化率。
考虑一个空间中的三维点P,其坐标为X=[X,Y,Z],在相机C中的投影点p的坐标为x=[u,v]。该过程包括以下步骤:
1. 从世界坐标系到相机坐标系的变换:通过旋转矩阵R和平移向量t将三维点的世界坐标(X, Y, Z)转换为在相机坐标下的位置(xG, yG, zG)。
[xG, yG, zG] = R * [X, Y, Z] + t
2. 归一化像平面的计算:将相机坐标系中的点(xG,yG,zG)归一化到标准化图像平面上(x,y),公式如下:
[x, y] = [xG/zG, yG/zG]
3. 最终成像过程:在考虑焦距f和径向畸变系数k5、k6的情况下,将归一化的坐标转换为实际的图像平面(u,v)。
[u, v] = f * d(k5, k6, r9) * [x, y]
其中,r9是从原点到该点的距离,并且d是包含径向畸变影响的函数。
雅可比矩阵A描述了输出变量(图像上的点u和v)相对于输入变量(三维坐标X及相机参数)的变化率。其形式如下:
A = [∂u/∂f, ∂u/∂k5, ∂u/∂k6, ..., ∂v/∂f, ∂v/∂k5, ∂v/∂k6,...]
雅可比矩阵的计算涉及对上述步骤中各个变量求偏导数。具体包括:
1. 关于焦距f和径向畸变系数k5、k6的偏导数,通过链式法则进行。
2. 对旋转矩阵R和平移向量t各分量的微分。
雅可比矩阵在相机标定及三维重建等应用中至关重要。它帮助减少投影误差,并优化参数估计过程,在机器人视觉等领域有广泛应用价值。