《矩阵分析及其应用》前六章涵盖了矩阵理论的基础知识与核心概念,包括线性空间、特征值问题及矩阵分解等,为读者深入学习和研究提供了坚实的基础。
矩阵分析是数学中的一个重要分支,在理工科领域有着广泛的应用。它不仅用于数学研究本身,还在物理学、力学、信号与信息处理、通信工程、控制系统、模式识别、计算机科学以及系统工程等多个学科中发挥着关键作用。矩阵分析的研究内容包括梯度分析、奇异值分解、特征值分析、子空间分析和投影分析等,这些工具为创新性应用提供了坚实的基础,并促进了新理论和技术的发展。
张贤达教授是清华大学的知名学者,他的研究方向主要集中在信号处理及其在雷达与通信中的应用。自1992年9月起,他担任清华大学自动化系教授,并于同年被评为博士生导师。张教授发表了多部学术著作和教材,在矩阵理论的应用方面积累了丰富的经验和深入的研究成果。
《矩阵分析与应用》一书共包含十章内容,全面介绍了矩阵分析的主要理论、方法及其应用。全书涵盖了线性方程组的解法、特殊类型的矩阵(如Toeplitz矩阵)、变换及分解技术、梯度优化和奇异值分析等主题,并深入探讨了总体最小二乘方法以及特征值与子空间分析等内容。该书结合了大量的实际案例,帮助读者理解如何运用这些理论解决科学和技术中的具体问题。
本书还提出了一套以梯度分析、奇异值分解、特征值计算及子空间和投影技术为核心的矩阵分析新体系,这一创新性的框架不仅包括了新的理论构想,而且提供了丰富的实践应用示例。此外,书中总结了大量的数学性质与公式,使其成为一本实用的矩阵手册。
张贤达教授在教育领域也有显著贡献,在多年的研究生教学中他发现工科特别是信息科学领域的学生对矩阵理论和线性代数的理解有所欠缺,《矩阵分析与应用》一书正是基于他对这一问题的认识而编写的。这本书不仅为研究者提供了新的视角,也为相关学科的教学工作提供了重要的参考材料。