Advertisement

STM32F407通过DMA和ADC实现24路连续采样,并将采集到的ADC值显示在屏幕上。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该资源的核心代码构建于Stm32F407平台之上,并能在正点原子探索者开发板上流畅运行。这段代码主要负责对共计24条ADC接口进行周期性扫描,并将获取到的ADC数值存储在一个数组中。随后,系统通过屏幕界面以可视化的方式呈现这些数据。请注意,由于开发板本身的硬件连接特性,通常会内置上下拉电阻,这并非程序逻辑的错误,而是实际硬件配置的结果,因此在实际应用中无需特别关注。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 正点原子STM32F407利用DMAADC24ADC数据
    优质
    本项目展示如何使用STM32F407微控制器结合DMA与ADC功能进行多通道数据采集,并将结果实时呈现在显示屏上,实现高效的数据处理与可视化。 这段代码是基于Stm32F407的资源,在正点原子探索者开发板上可以很好地运行。其功能主要是轮询扫描总共24路的ADC接口,并将获取到的ADC值保存在数组中,最终通过屏幕显示出来。需要注意的是,在使用该开发板时,很多IO口被内置了上下拉电阻,但这并不是程序的问题,而是实际硬件连接导致的结果,在实际应用中无需担心这一点。
  • STM32F407 DMA 传输 ADC 串口
    优质
    本项目介绍如何使用STM32F407微控制器进行ADC采样,并利用DMA技术实现数据高效传输至外部存储器,同时将采集到的数据通过串口实时输出显示。 基于正点原子的例程进行了修改,在STM32F407上实现了通过串口显示ADC采样并通过DMA传输的功能。该程序附带了STM32的中英文说明书。
  • STM32F407_ADC_DMA_多DMA_adc.rar_STM32F407+ADC+DMA
    优质
    本资源提供STM32F407微控制器使用ADC与DMA进行多通道连续采样的示例代码和配置文件,适用于需要高效采集模拟信号的嵌入式项目。 STM32F407多通道DMA连续采样代码已经过亲测验证可用。
  • STM32F407ADC DMA代码
    优质
    本项目提供STM32F407微控制器使用双通道ADC配合DMA进行数据采集的代码示例。通过高效的数据传输方式实现快速、低延迟的数据采集功能,适用于需要实时监测多路模拟信号的应用场景。 使用HAL库编写STM32F407的双通道ADC DMA采集代码:第一通道连接到PA3引脚,用于接收光敏电阻的数据;第二通道为单片机内部温度传感器通道。通过串口输出数据进行调试与监测。
  • STM32 使用DMAADC进行三道电压
    优质
    本文介绍了如何使用STM32微控制器结合直接存储器访问(DMA)与模拟数字转换器(ADC),实现对三个输入信号的连续电压采样,旨在为嵌入式系统开发人员提供高效的多路数据采集方案。 使用STM32库文件通过DMA联立ADC实现三通道电压的连续采样和转换。
  • STM32F407 使用DMA进行12ADC
    优质
    本项目详细介绍如何在STM32F407微控制器上配置并使用DMA技术实现高效、快速的12通道模拟数字转换器(ADC)采样,适用于需要多路信号同步采集的应用场景。 在项目中已成功利用STM32F407的DMA传输实现ADC 12通道交替采样。
  • STM32 ADC结合DMA16
    优质
    本项目详细介绍如何使用STM32微控制器配合DMA功能进行高效的数据采集,具体实现了对16个通道的同时采样,提高了系统的响应速度和处理效率。 STM32是一款基于ARM Cortex-M内核的微控制器,在各种嵌入式系统中有广泛应用。其ADC(模拟数字转换器)功能强大,并且通过搭配DMA(直接内存访问),可以实现高效的无CPU干预的数据采集。 在使用STM32 ADC和DMA进行16路采样的场景中,我们将讨论如何配置和操作STM32的ADC与DMA以达到多通道同时采样。具体来说,STM32F系列芯片如STM32F103、STM32F407等支持多达16个独立输入通道,这些通道可以连接到不同的模拟信号源上,实现对多个传感器或其他模拟信号的并行采集。 以下是配置ADC时需要关注的关键步骤: 1. **初始化ADC**:设置工作模式(例如连续转换)、采样时间、分辨率和序列队列等参数。选择适当的采样时间和分辨率以确保精度。 2. **通道配置**:为每个所需的输入通道分配一个序列,并指定其信号源,同时启用相应的通道。 3. **DMA配置**:选定合适的DMA流与通道设置传输方向(从外设到内存),并激活中断标志,在数据传输完成后执行特定处理任务。 4. **连接ADC和DMA**:在初始化过程中配置ADC的DMA请求,确保每次完成一次转换后能够触发相应的DMA操作。 5. **启动设备**:当所有设定都就绪之后,开始进行ADC转换,并开启DMA传输功能。 实际应用中还需注意以下几点: - **同步问题**:为了保证多通道采样的一致性,需要设置相同的延迟或使用同步信号来确保它们的启动时间一致。 - **数据处理**:由DMA负责将采集到的数据直接写入内存。开发者需确定好存储位置,并编写中断服务程序来进行后续的数据读取和保存操作。 - **电源管理**:高频采样会消耗更多电力,因此在设计阶段应考虑适当的电源策略以降低功耗。 - **性能优化**:通过合理规划DMA与CPU的工作流程来避免资源竞争并提升整体效率。例如,在数据传输期间让CPU执行其他任务可以提高系统运行速度。 综上所述,STM32的ADC加DMA 16路采样技术能够实现快速、实时的数据采集,并适用于众多高性能嵌入式应用场景。掌握这些配置和优化技巧对于开发基于STM32复杂系统的工程师来说十分重要。
  • STM32F103RC结合ADCDMA与LCD
    优质
    本项目基于STM32F103RC微控制器,采用ADC配合DMA实现多路信号同步采集,并通过LCD实时显示数据,适用于工业监测系统。 在MINI STM32开发板上使用DMA方式实现ADC的多通道采样,并采用循环采样模式。采集到的数据包括8个通道的结果,并显示在LCD屏幕上。
  • 求均提升ADC分辨率
    优质
    本文探讨了一种提高模数转换器(ADC)分辨率的方法,通过采用采样过采样及求均值技术,有效提升了信号处理精度与质量。 本应用笔记讨论了如何通过过采样和求均值的方法来提升模/数转换器(ADC)测量的分辨率。此外,本段落最后的附录A、B和C分别提供了对ADC噪声的深入分析,包括最适合使用过采样技术的ADC噪声类型以及采用过采样和求均值技术的实际示例代码。
  • STM32F407定时器启动ADC-DMA
    优质
    本文介绍了如何使用STM32F407微控制器通过配置定时器触发ADC-DMA模式进行数据连续采集的具体步骤和方法。 基于STM32F407的程序实现了通过DMA方式进行ADC采样,并使用定时器进行周期性触发。程序中采用的是ADC3通道0、1、2,并由定时器2触发。该程序已在STM32F407开发板上进行了验证。