
100G光模块技术及其应用
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本文章探讨了100G光模块的技术细节及行业应用,包括其工作原理、性能特点以及在数据中心和通信网络中的重要作用。
随着互联网的快速发展,对光通信的需求日益增加,100G光模块应运而生。作为新一代高速光模块,它在实现长距离传输方面采用了多种关键技术,其中最核心的是DP-QPSK调制技术和相干检测技术。
DP-QPSK即双极化四相相移键控技术,能够通过两个25Gbaud QPSK调制信号在正交的偏振光载波上传输100Gbits的数据量。而在接收端,采用相干检测技术可以将接收到的信号与本地光源混频,实现对信号的精确解调和恢复。
面对信道间隔、色散容限(CD)、偏振模色散(PMD)以及光信噪比(OSNR)等多方面的挑战,100G系统需要支持50GHz波长间隔,并采用如DP-QPSK、8QAM、16QAM和64QAM等多种调制方式。为应对更严格的CD限制,需使用色散补偿技术;对于更低的PMD要求,则可通过相干接收结合数字信号处理来解决。
在实现100G DP-QPSK传输时,发射机包含两个50G QPSK调制器,并通过偏振复用将X轴和Y轴光信号合并。由于DP-QPSK仅需使用14GHz带宽,因此能够有效利用25G光电子器件并保持其性能表现。
对于接收端的相干检测技术来说,则需要高速模数转换电路及数字信号处理芯片来恢复均衡信号,并提高OSNR灵敏度和实现高光谱效率。此外,在非线性效应方面也需要采用多种技术手段加以应对。
100G客户端模块,例如CFP(C form-factor pluggable)光模块,用于以太网帧封装的IP业务传输接口中,其要求更高的传输距离与速率。针对这一需求,《IEEE802.3ba》标准工作组完成了40Gb和100Gb以太网标准化工作。
由于100G光模块的工作速度及传输范围远超以往产品,因此ADC采样率成为技术难点之一。根据规范要求,至少需要达到信号波特率两倍的Double Sampling速率来完整保留相位信息。这意味着即使使用标准7%编码冗余FEC算法,双倍采样的ADC仍需达到54G以上。
数字信号处理部分则通过CMOS技术实现,包括定时恢复、信号恢复以及色散补偿等功能,确保信号质量并消除带外噪声干扰。
总之,100G光模块的技术与应用代表了当前光通信领域的前沿水平。它不仅提升了数据传输速率和距离,并且显著增强了网络的宽带性能。随着相关技术不断发展和完善,预计未来一段时间内将逐渐成为主流选择之一。
全部评论 (0)


