Advertisement

基于进化神经网络的移动机器人路径规划研究(2010年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究于2010年探讨了利用进化神经网络技术优化移动机器人的路径规划问题,旨在提高算法效率及适应复杂环境的能力。 本段落研究了进化机器人路径规划的不可移植性问题:即在某一环境中通过进化的良好行为,在环境发生变化后不再适用,需要重新进行进化与学习。提出了一种基于神经网络的方法来构建移动机器人传感器输入与其执行器输出之间的映射关系,并据此设计了一种新的进化机器人的路径规划算法。 该算法结合了反应式行为和行为学习的复合体系结构:使用距离传感器信息及决策量作为样本库,完成反应性行为;同时采用改进型进化算法优化神经网络中的权重。在进化的过程中,新出现的数据会被不断加入到样本库中,使机器人的高级智能操作逐渐转变为低级本能响应。 文中详细描述了该方法的具体步骤,并通过仿真实验验证了其有效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2010
    优质
    本研究于2010年探讨了利用进化神经网络技术优化移动机器人的路径规划问题,旨在提高算法效率及适应复杂环境的能力。 本段落研究了进化机器人路径规划的不可移植性问题:即在某一环境中通过进化的良好行为,在环境发生变化后不再适用,需要重新进行进化与学习。提出了一种基于神经网络的方法来构建移动机器人传感器输入与其执行器输出之间的映射关系,并据此设计了一种新的进化机器人的路径规划算法。 该算法结合了反应式行为和行为学习的复合体系结构:使用距离传感器信息及决策量作为样本库,完成反应性行为;同时采用改进型进化算法优化神经网络中的权重。在进化的过程中,新出现的数据会被不断加入到样本库中,使机器人的高级智能操作逐渐转变为低级本能响应。 文中详细描述了该方法的具体步骤,并通过仿真实验验证了其有效性。
  • 技术方法
    优质
    本研究提出了一种利用神经网络技术优化移动机器人路径规划的方法,通过深度学习提高机器人的自主导航能力。 本段落提出了一种基于递归神经网络的实时路径规划方法,适用于动态环境下的移动机器人路径规划问题。该方法通过使用神经网络来表示机器人的工作空间,并且每个神经元仅与邻近的几个节点相连形成局部连接结构。目标点位置对应的神经元具有最高的正活性值,这个高活性会随着距离逐渐衰减传播到整个状态空间;而障碍物及其周围区域则被设置为零活性以实现避障功能。这种方法能够使机器人在动态环境中自动规划出一条避开障碍且接近目标的最优路径。 仿真结果表明该方法具备良好的环境适应性和实时性,能够在变化多端的真实场景中有效运行。
  • 应用
    优质
    本研究探讨了在机器人路径规划中运用神经网络技术的方法与效果,通过模拟实验展示了其在动态环境下的适应性和高效性。 智能算法在实际应用中非常普遍,本方法也是如此。神经网络中的CMAC(选择性记忆自适应控制)技术被广泛使用。
  • 算法综述.pptx
    优质
    本研究综述探讨了移动机器人路径规划领域的最新进展与挑战,涵盖了多种算法和技术,并分析了它们的应用场景和优缺点。 移动机器人的路径规划是自主导航的核心技术之一,其目标是在给定的起点与终点之间寻找一条安全、高效且最优的路线。这一过程需要综合考虑机器人运动约束条件、环境信息以及能耗等多种因素。 基本概念上,路径规划是指在已知地图或模型中为机器人确定从起始点到目的地的一条无障碍物的最佳路径。当前主要存在基于图结构的方法、采样技术及机器学习方法等几大类算法。 基于图的路径优化策略将环境抽象成图形模式,并通过节点代表物体与障碍,边表示通行路线来建模。常用的技术包括A*算法和Dijkstra算法。其中,A*利用启发式函数指导搜索过程以快速找到最优解;而Dijkstra则采用贪心法计算出起点到所有点的最短路径。 基于采样的方法通过随机或确定性抽样获取环境数据,并据此构建机器人可达区域的地图(如网格图、凸包等),进而应用搜索算法找出最佳路线。代表性技术有粒子滤波和人工势场模型,前者使用一组代表状态与信息的“粒子”应对非线性和非高斯问题;后者通过模拟质点间的引力作用指导机器人的移动方向。 近年来,基于机器学习的方法在路径规划中展现出巨大潜力。这些方法利用大量数据训练出能够预测最佳路线的模型,如深度学习、神经网络和强化学习等技术的应用已经取得了显著进展。它们具备强大的非线性映射能力和自适应能力,在处理复杂动态环境及多变目标时尤为有效。 未来发展方向包括但不限于:多智能体路径规划(解决多个机器人协同作业的问题)、多目标优化(应对多种任务需求)、深度与增强式学习的结合、多元感知技术融合以及在线学习和自我调整等方向。随着科技的进步,移动机器人的路径规划将更加智能化,并在更多的实际场景中得到应用。
  • 在迷宫中.pdf
    优质
    本论文探讨了路径规划算法在迷宫环境中引导机器人自主导航的技术和策略,旨在提高机器人路径选择效率与准确性。 迷宫移动机器人的设计与实现是智能机器人领域中的一个重要课题,它涵盖了传感器技术、控制理论以及路径规划算法等多个学科的知识点。本段落将详细解释迷宫移动机器人在这些关键知识点上的应用。 核心在于路径规划的迷宫移动机器人能够在未知环境中自主探索一条从起点到终点的有效路线。这种策略分为全局和局部两种:前者侧重于整个路线的选择,后者则关注即时调整以应对障碍或复杂环境的变化。 实现这一目标的迷宫移动机器人通常包括传感器、控制器以及运动机构三大部分: - 传感器负责获取机器人的位置信息,并识别可行路径及路口等特征。例如红外对管可以检测黑胶布与浅色地板之间的反光差异,以此来判断方向和位置。 - 控制器是整个系统的大脑,它接收并处理来自各种传感器的数据,在此基础上做出决策以指导下一步行动。 - 运动机构则由电动机及其驱动电路组成,根据控制器的指令调整速度和转向等动作。 在软件设计方面,则需要实现路径搜索算法来帮助机器人选择路线。常见的有深度优先、广度优先以及A*等多种策略可供选用;同时还需要处理传感器传来的模拟信号,并转换为数字形式以便进一步分析使用。 最后,为了便于用户交互,一个友好的界面也是必不可少的,它能够接收用户的指令并反馈机器人的状态信息。 综上所述,高效的环境感知能力、强大的数据处理能力和灵活的动作执行机制是迷宫移动机器人成功的关键。通过综合硬件和软件技术的应用,这样的系统可以在未知环境中自主完成探索路径的任务。
  • 混合差分算法
    优质
    本研究提出了一种基于混合差分进化策略的移动机器人路径规划算法,旨在优化搜索效率与路径质量,适用于复杂环境中的自主导航任务。 针对移动机器人无碰撞最短路径规划问题,本段落提出了一种人工势场与差分进化算法相结合的混合方法。首先建立了在全局环境信息已知的情况下,用于移动机器人的无碰撞路径模型,并利用差分进化算法来寻找最优路径。为了优化差分进化的性能,在变异因子的选择上采用了适应性调节策略;同时针对该算法交叉操作中可能出现的不可行解问题,引入了人工势场法进行修正,从而提高了求解最短路径的有效性和准确性。 实验结果显示,所提出的混合方法在收敛速度和解决方案质量方面均优于传统的差分进化算法。因此这种方法能够有效解决移动机器人的无碰撞路径规划难题。
  • D* Lite算法
    优质
    本研究提出了一种基于D* Lite算法的高效路径规划方法,专门针对移动机器人的复杂环境导航需求进行了优化,显著提升了其在动态障碍物中的路径适应性和实时性。 采用D*Lite算法规划出的路径不够平滑,并且与障碍物的距离较近。在动态环境下,通过D*Lite算法重新规划得到的路径同样非常接近障碍物,容易导致碰撞发生。为解决这些问题,本段落引入了一种懒惰视线算法和距离变换相结合的方法来改进D*Lite算法。 首先对地图进行距离变换处理,并且加入启发式代价计算方法以使得远离障碍物的节点优先被选取;其次,在扩展节点的过程中采用视线算法并定义了本地父亲节点与远程父亲节点的概念,使路径规划不再局限于八邻域内搜索,从而能够实现任意角度下的路径搜索。最后,在遇到未知障碍物时进行局部距离变换,并结合启发式距离信息重新规划路线以避开突然出现的障碍物。 通过仿真实验验证发现,在不同环境下使用改进后的算法所得到的路径更加平滑且安全。
  • 算法
    优质
    本研究聚焦于机器人路径规划领域的核心算法,深入探讨并分析了多种优化技术及其实际应用效果,旨在提升机器人的自主导航能力。 路径规划的目标是在给定的起点和目标点之间找到一条无碰撞路径。基于图论的经典路径规划算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、迪杰斯特拉算法(Dijkstra)以及A*算法。此外,还有一些智能路径规划方法,例如蚁群算法、遗传算法及模糊逻辑等。