Advertisement

嵌入式系统和ARM技术中的嵌入式Linux RFID信息采集与处理系统。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
射频识别(RFID)是一种无需人为介入的自动识别技术,它利用射频信号自动地识别目标对象,并进而获取与之相关的资讯。该识别过程能够在各种复杂和严苛的环境条件下顺利运行。RFID技术已广泛应用于众多领域,例如停车场管理以及集装箱运输管理系统等。在绝大多数应用场景下,仅仅需要部署若干个固定的阅读器即可;然而,在某些特定的系统中(例如集装箱运输管理系统),不仅需要使用固定式阅读器,还需要配备手持式的读卡设备。TagMaster AB公司是一家享誉全球的RFID读卡器制造商,该公司致力于提供性能卓越的固定式阅读器,同时还提供一种便捷的手持式读卡器解决方案。该手持式读卡器由Caiso公司提供的工业级个人数字助理(PDA)以及Tag…共同组成。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于LinuxARMRFID应用研究
    优质
    本研究探讨了在RFID系统中采用基于嵌入式Linux的ARM技术进行信息采集和处理的方法及优势,旨在提升系统的稳定性和效率。 射频识别(RFID)是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据,在此过程中无需人工干预,并且能够在各种恶劣环境中正常工作。RFID 技术已广泛应用于多个领域,例如停车场管理和集装箱运输管理系统等。在许多应用中,只需要固定的阅读器即可满足需求;然而,在某些特殊系统(如集装箱运输管理)中,则不仅需要固定式读卡器,还需配备手持式设备。 TagMaster AB 是一家全球知名的RFID 读写器制造商,该公司提供性能卓越的固定式和便携式两种类型的阅读器。其中的手持装置是由另一家公司Caiso生产的工业级个人数字助理(PDA)与Tag结合而成的产品。
  • 基于图像传输/ARM设计
    优质
    本项目专注于开发一种集成化的嵌入式图像信息采集和传输系统,旨在利用先进的ARM技术优化数据处理效率,实现高效、稳定的图像信息实时传输。 本段落设计并实现了一种基于ARM9核心的嵌入式系统家庭安防方案,并配备了MC35I无线通信模块、红外传感器模块以及CMOS摄像头OV9650模块,形成了完整的硬件电路结构。 1. 引言 长久以来,家庭安全问题一直困扰着人们。随着“智能家居”的兴起和发展,这些问题得到了一定程度的解决并提升了居民的生活质量。然而,“智能家居”高昂的成本让许多普通消费者望而却步。为此,本段落提出了一种简单且经济的家庭安防系统方案以满足大众的需求。 2. 系统硬件电路设计 如图1所示,该系统的硬件部分由嵌入式核心板及其外围设备组成。这些组件协同工作来完成家庭安全监控的功能需求。
  • ARMWiFi研究设计
    优质
    本研究聚焦于嵌入式系统和ARM架构下WiFi技术的应用,探索其在低功耗、小型化设备中的高效通信解决方案。 嵌入式WiFi技术是当前无线网络应用的一个热点领域。本段落介绍了IEEE802.11b的基本技术,并提出了一种适用于嵌入式环境的WiFi通信设计方案;通过一个移动监护系统的具体实现,证明了该方案的有效性。 目前,基于IEEE802.11标准的无线局域网在语音通信、无线办公等领域得到了广泛应用。然而这些应用主要集中在PC机和笔记本电脑等通用平台上进行无线通信。随着信息家电、工业控制以及移动手持设备领域的需求增加,如何将WLAN宽带通信技术整合进嵌入式系统中成为了一个重要课题。
  • 基于Linux视频图像传输在/ARM应用
    优质
    本项目探讨了在嵌入式Linux环境下,通过ARM平台实现视频图像的有效采集、压缩及无线传输的技术方案及其实际应用。 视频图像采集及处理技术在远程监控与可视通话中有广阔的应用前景。驱动视频设备并获取、处理视频数据是实现这些应用的基础。为此,我们基于嵌入式Linux系统和PXA270微处理器设计了一个集视频采集与传输于一体的系统。该系统利用Video4Linux协议从USB摄像头中捕获视频数据,并通过JPEG压缩技术进行优化,在PXA270的控制下经由以太网实现数据传输,同时我们重新编译移植了Webcam_server程序来支持实时视频流获取。实验结果显示,此系统具有良好的动态更新性能和实用性。
  • ARM软件开发语言——C编程
    优质
    本课程聚焦于嵌入式系统的软件开发,特别是基于ARM架构的应用。深入探讨并实践嵌入式C编程技巧,适用于希望掌握高效硬件控制的工程师和开发者。 在我们初学嵌入式开发的时候,经常会遇到一个问题:C语言与嵌入式C编程有何不同?通常情况下,经验丰富的嵌入式工程师会解释说,区别在于嵌入式的C语言是运行于特定的硬件平台上的(如微处理器或微控制器),而不是通用计算机。这也就意味着编译器和生成的可执行程序也会有所不同。 不同于一般的软件开发,在基于特定硬件环境进行编程时,对于其编程语言的要求更加严格:需要具备直接操作硬件的能力。虽然汇编语言能够满足这一要求,但由于它复杂的编写过程以及难以维护的特点,并不常被用于嵌入式系统中。相反地,“低层次”的C语言因其兼具高级抽象能力和接近底层的控制能力而成为首选。 **一、理解嵌入式** 嵌入式系统是计算机科学中的一个重要分支领域,专注于设计特定功能的专用计算机体系结构。这些系统广泛应用于各种设备之中,例如智能手机、家用电器及汽车电子装置等。在这一领域的开发工作中,ARM技术扮演着至关重要的角色——由于其高效低耗的特点而被大量应用到嵌入式环境中。 **嵌入式C编程** 与标准C语言相比,嵌入式的C编程更加专注于针对特定硬件环境的需求编写代码。这意味着,在此类系统中运行的程序需要直接在微处理器或控制器上执行,并且要求开发者具备更深入地理解内存管理、中断处理以及对硬件寄存器的操作等知识。 **特点** - **实时性与低功耗:** 嵌入式C编程强调高效的代码设计,以确保系统的响应速度和能源效率。 - **紧凑性和定制化:** 由于软件通常固化在设备内部存储中(不依赖于外部介质如磁盘),因此系统的设计注重高效、精简,并针对具体应用进行优化。 嵌入式硬件包括处理器(例如ARM微控制器)、内存单元、外围装置及其接口,而其软件则由操作系统和应用程序构成。前者负责管理资源分配以及确保多任务处理的实时性;后者定义了系统的功能特性。 **核心组件** - **嵌入式微处理器:** 支持实时操作环境下的多线程工作模式,并具备低能耗运行、内存保护机制及可扩展架构等优势。 - **存储器与外设接口:** 硬件基础包括内部和外部存储资源,以及用于数据传输的设备。 与其他类型的操作系统相比,嵌入式系统的独特之处在于它们的设计更加注重效率(以实现最佳性能并减少占用空间),并且软件通常是固化在硬件中的。此外,在开发过程中需要使用特定工具链,并且一旦部署到实际产品中后通常不允许用户直接修改其功能特性。 - **长生命周期:** 由于与具体应用紧密结合,这些系统的更新周期往往较长。 对于初学者而言,掌握嵌入式C编程可能具有一定难度,因为这不仅要求对硬件原理有深入了解还必须熟悉操作系统的工作机制。然而通过系统化的学习路径和教程(例如某些在线教育平台提供的资源),可以帮助开发者更好地理解和运用这一技术领域内的知识与技能,在ARM架构的嵌入式开发工作中取得进展。
  • Linux/ARM低功耗策略研究
    优质
    本研究聚焦于嵌入式Linux环境下针对ARM架构系统的低功耗优化策略,探索有效降低能耗的方法和技术,旨在提高设备能效和延长电池寿命。 摘要:功耗是衡量嵌入式设备性能的关键指标之一。在硬件设计完成后,软件的设计对系统的能耗水平有着重要影响。鉴于Linux操作系统在嵌入式领域的广泛应用,本段落提出了一些针对嵌入式Linux环境下的编程策略,以期通过这些方法有效降低最终产品的能源消耗。 引言 由于具备多种CPU和硬件平台的兼容性、稳定性和良好的可裁剪特性等优势,再加上源代码开放及易于开发与使用的特点,基于Linux系统的应用在嵌入式设备中越来越普遍。这表明,在嵌入式的领域里,Linux正在发挥着日益重要的作用。 对于移动及其他类型的嵌入式设备而言,功耗是衡量系统性能的重要参数之一。
  • ARM
    优质
    《ARM嵌入式微处理器系统》是一本全面介绍基于ARM架构的嵌入式系统的书籍,涵盖了硬件设计、软件开发和应用实践等内容。 嵌入式微处理器系统在现代科技领域扮演着至关重要的角色,尤其是在ARM架构的应用上。这一领域的知识深度与广度都非常广泛。 首先我们要理解“单片机原理”。单片机是一种将中央处理器、存储器及输入输出接口集成在同一块芯片上的微型计算机,在嵌入式微处理器系统中是核心部件,负责处理和控制硬件系统的运行。学习单片机原理需要掌握其内部结构,包括CPU、ROM(只读内存)、RAM(随机存取内存)以及IO端口等,并理解它们如何协同工作来执行程序及控制外部设备。 其次深入探讨ARM架构。作为精简指令集计算机(RISC)的一种特定架构, ARM因其高效能与低功耗的特点被广泛应用于各种嵌入式设备中,如智能手机、物联网(IoT) 设备、汽车电子系统以及医疗装置等。它设计了多种处理器内核, 如Cortex-A系列用于高性能计算,Cortex-R系列适用于实时应用和微控制器领域中的Cortex-M系列。 在相关教程的学习过程中,通常会涵盖以下关键知识点: 1. ARM指令集:理解ARM指令的基本结构与操作方法,包括数据处理、分支及加载存储等指令,并了解Thumb和Thumb-2扩展以提高代码密度。 2. 内存管理:掌握ARM处理器的内存模型及其原理, 例如冯·诺依曼架构与哈佛架构的区别以及高速缓存的工作机制。 3. 系统级集成:熟悉ARM处理器与其他外围设备之间的接口,如中断控制器、定时器和串行通信接口等。 4. 开发工具链:学会使用GCC编译器、GDB调试器及Keil MDK等开发工具,并掌握如何编写与调试汇编语言以及C++代码。 5. 操作系统支持:学习实时操作系统(RTOS) 如FreeRTOS的基本原理及其在ARM平台上的移植和应用方法。 6. 应用实例:通过智能家居、无人机或汽车电子等实际项目,实践ARM嵌入式系统的开发与实现过程。 7. 软硬件协同设计:理解软件如何与硬件进行交互以及优化代码以利用特定的硬件特性来提高系统性能。 通过深入学习和应用这些技术, 可以为未来在物联网、智能设备等领域的发展奠定坚实的基础。对于开发者而言,掌握这一技能不仅可以提升专业能力,还有助于把握科技发展的前沿趋势。
  • ARM对比实时LinuxRTOS
    优质
    本文探讨了在基于ARM架构的嵌入式系统开发中,实时Linux操作系统与RTOS(实时操作系统)之间的异同及优劣。通过分析两者性能、灵活性和适用场景等方面的特点,为开发者选择合适的解决方案提供参考依据。 实时操作系统(RTOS)在嵌入式系统及ARM技术领域发挥着关键作用,特别是在需要高效、精确时间控制的应用场景下尤为重要。本段落将对比分析实时Linux与通用RTOS的主要特性和体系结构差异。 硬实时系统要求必须在预定时间内完成操作,这是设计阶段就确定的特性,适用于航空和航天等对时间精度有极高需求的领域;软实时系统则更灵活一些,在处理任务时只需尽可能快即可。常见的应用场景包括多媒体处理和某些网络应用环境。 实时Linux是标准Linux系统的变种版本,通过添加特定补丁或配置选项来增强其实时性能。它支持部分POSIX标准,并允许开发者利用熟悉的开发工具进行编程工作,适合那些对系统响应速度有一定要求但不是硬性需求的项目使用。 RTOS如QNX、LynxOS和RT-Linux等则专注于提供高性能的实时处理能力。其中,QNX采用微内核架构并遵循POSIX标准,具有高效的进程调度机制;LynxOS虽然目前非微内核结构设计但计划通过Galaxy技术转型以增强其性能及灵活性;而RT-Linux实现了一个小型核心用于基础任务管理和中断处理,并兼容Linux的庞大软件生态。 采用微内核架构是许多RTOS的选择方案,这种设计方案的优势在于可以将系统的核心部分保持得相对较小且稳定可靠,易于固化在只读存储器(ROM)中,并支持模块化扩展。然而,缺点则是进程间通信和上下文切换可能带来一定的性能开销。相比之下,宏内核结构如传统Linux内核则集成了更多服务功能于一身,在某些情况下可能会降低实时性表现但同时提供更丰富的特性与更高的执行效率。 在选择适合的RTOS时需综合考虑多个因素,包括但不限于系统的实时响应能力、稳定性水平、开发工具链的支持力度以及软件生态体系的丰富程度等。对于那些既需要保持与标准Linux兼容又希望具备一定实时处理性能的应用项目来说,实时Linux往往是一个合适的选择;而对于追求极致高性能和定制化解决方案的需求,则更推荐采用QNX或LynxOS这类RTOS系统。 综上所述,无论是选择实时Linux还是RT-Linux等特定的RTOS平台,在面对嵌入式开发任务时都需要根据项目的具体需求进行权衡取舍。这包括但不限于对实时性要求、资源限制条件以及软件兼容性和成本效益等方面的考量。深入了解这些操作系统各自的特性与差异有助于做出更为明智的选择决策。
  • 基于S3C2410ARM图像
    优质
    本项目探讨了在基于S3C2410处理器的嵌入式系统中,利用ARM架构实现高效的图像采集与处理方法。通过优化硬件接口和软件算法,该系统能够快速、稳定地捕获高质量图像数据,适用于监控、医疗成像等多种应用场景。 引言 嵌入式监控系统作为安全防范技术体系的重要组成部分,在图像采集与存储功能方面发挥着关键作用。随着微电子技术和软件技术的不断进步,嵌入式技术也取得了显著的发展。基于此,结合了嵌入式技术的图像数据采集和存储监控系统由于其直观性、便捷性和信息量丰富的特点而被广泛应用于各种场合。 这类监控系统的运行环境具有特定的要求,并且需要具备独特的结构特性。因此,这对监控系统的软硬件平台提出了较高的需求标准。随着处理器性能提升及接口传输能力增强,特别是未来大容量存储器的应用普及,图像监控系统的小型化和多功能化的实现变得更加容易。当嵌入式技术被引入到这类系统中后,则必须解决两个关键问题:一是能够灵活调整的监控结构设计;二是制定符合标准规范、涵盖图像与信号检测及控制功能在内的综合解决方案。
  • 基于ARM&Linux图像
    优质
    本项目构建于ARM架构和Linux操作系统之上,旨在开发一套高效、灵活且易于扩展的嵌入式图像处理解决方案。该系统集成了先进的图像识别与分析技术,广泛应用于智能监控、医疗影像等多个领域,致力于为用户提供高质量的数据处理服务。 大家好,这是我的毕业设计作品。该系统主要介绍了嵌入式系统的架构以及开发的一般方法。在设计过程中,我采用了基于ARM与Linux的嵌入式图像处理技术,并且使用的图像是BMP格式。由于我个人水平有限制,因此这份设计方案仅供各位参考使用。