Advertisement

光伏并网逆变与低电压穿越控制策略的研究_胡永萍.caj

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了光伏并网逆变技术及其在电网波动情况下的稳定性问题,重点研究了低电压穿越(LVRT)的控制策略,以提高光伏发电系统的可靠性和效率。 光伏并网逆变及低电压穿越控制策略研究是胡永萍撰写的一篇文章。该文章探讨了如何优化光伏系统在电网中的接入,并提出了一系列有效的控制策略来确保系统的稳定性和可靠性,尤其是在面对电网电压波动时的表现。这些措施对于提高光伏发电的效率和适应性具有重要意义。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 穿_.caj
    优质
    本文探讨了光伏并网逆变技术及其在电网波动情况下的稳定性问题,重点研究了低电压穿越(LVRT)的控制策略,以提高光伏发电系统的可靠性和效率。 光伏并网逆变及低电压穿越控制策略研究是胡永萍撰写的一篇文章。该文章探讨了如何优化光伏系统在电网中的接入,并提出了一系列有效的控制策略来确保系统的稳定性和可靠性,尤其是在面对电网电压波动时的表现。这些措施对于提高光伏发电的效率和适应性具有重要意义。
  • 关于储微穿.pdf
    优质
    本文探讨了光储微电网在电力系统中的应用,并深入研究了其低电压穿越(LVRT)控制策略,以提高系统的稳定性和可靠性。 光储微电网的低电压穿越控制策略研究
  • 优质
    本研究聚焦于提升光伏发电系统的效能与稳定性,探讨了多种适用于光伏并网发电的逆变器控制策略,旨在优化能量转换效率及电能质量。 本段落论述了光伏并网的控制策略,并基于MATLAB进行了仿真分析,内容清晰且有条理。
  • 关于单相
    优质
    本研究聚焦于单相光伏并网逆变器的优化控制策略,旨在提高系统的效率和稳定性,为可再生能源的有效利用提供技术支持。 ### 单相光伏并网逆变器的控制策略研究 #### 一、引言 近年来,随着光伏技术的快速发展和广泛应用,太阳能作为一种重要的清洁能源,在全球范围内得到了越来越多的关注和利用。特别是在日照资源丰富的地区,光伏系统不仅能够有效减少对传统化石能源的依赖,还能大幅度降低温室气体排放量,对于推动可持续发展具有重要意义。在此背景下,单相光伏并网逆变器作为连接光伏板与电网的关键设备之一,其设计与控制策略的研究显得尤为重要。 #### 二、光伏并网系统主电路 ##### 2.1 并网主电路拓扑 单相光伏并网系统通常采用电压型桥式逆变结构。这种结构的优势在于简单易行且损耗较低,并易于实现精确的电流和电压调控。该电路包括四个开关管(一般为IGBT或MOSFET),每个开关管配有反向并联二极管,用于在开关转换期间提供续流路径,从而有效缓冲PWM过程中的无功电能。逆变器输出通过输出电感与电网相连,确保电流的平滑性和正弦特性,并减少高频谐波分量。 ##### 2.2 主电路工作原理 单相并网发电系统的主电路逆变桥左右桥臂分别输出相位互差180度的SPWM(正弦脉宽调制)信号。通过电感滤波,可以将含有高频载波成分的PWM信号转换为接近正弦波形的电流信号,并输入电网中。在并网电流的一个周期内,加到电感上的电压u_L会有三种状态:正值、零值和负值。根据i_L的方向,确定逆变器上下桥臂的工作模式。 #### 三、控制策略研究 单相光伏并网逆变器的控制策略主要包括以下几个方面: 1. **最大功率点跟踪(MPPT)**:由于光照强度和温度等因素影响太阳能电池板输出功率,需要采用MPPT算法调整工作状态,使系统始终处于最佳效率。 2. **电网电压前馈控制**:为了提高系统的稳定性和抗干扰能力,使用电网电压前馈控制技术。该方法通过实时监测并反馈电网电压变化信息到控制系统中,确保逆变器输出不受电网波动影响。 3. **电流跟踪控制**:为实现并网电流的正弦化和单位功率因数运行目标,采用电流跟踪控制技术。这通常涉及比较参考电流与实际电流之间的差异,并根据偏差调整PWM信号占空比以逼近理想波形。 4. **功率因数校正(PFC)**:通过调节逆变器输出相位匹配电网电压来实现单位功率因数运行,从而提高系统效率和减少对电网的污染影响。 #### 四、实验验证 为了证明上述控制策略的有效性,进行了相应的实验测试。结果表明,在采用电网电压前馈及电流跟踪技术的情况下,并网电流能够达到正弦化目标并保持稳定输出性能。此外,无论在何种工况条件下(包括电网波动),系统均能维持良好表现。 #### 五、结论 通过对单相光伏并网逆变器控制策略的研究,提出了一种高效设计方案:采用电压前馈和电流跟踪技术实现并网电流正弦化与单位功率因数运行,并确保在复杂环境下的稳定性能。未来可进一步探索更优的算法和技术来满足日益增长的清洁能源需求。 单相光伏并网逆变器控制策略的研究对于推动光伏发电技术的进步至关重要,通过持续优化和完善相关方法可以显著提升系统整体效率和可靠性,为构建清洁、高效且可持续发展的能源体系奠定坚实基础。
  • 基于MATLAB穿仿真模型
    优质
    本研究构建了基于MATLAB的光伏并网逆变器低电压穿越(LVRT)仿真模型,旨在评估和优化逆变器在电网电压骤降情况下的稳定性和性能。 使用MATLAB 2017b搭建光伏逆变器低电压穿越仿真模型,采用boost加NPC拓扑结构,并基于MATLAB/Simulink进行建模仿真。该模型具备中点平衡SVPWM控制、正负序分离控制以及PLL功能,能够完成低电压穿越仿真的任务。整个控制系统设计完整,产生的波形质量高。
  • 基于Simulink穿仿真模型
    优质
    本研究构建了一个基于Simulink平台的光伏并网逆变器低电压穿越(LVRT)仿真模型。该模型详细分析了逆变器在电网故障情况下的性能,并验证了其有效性和可靠性,为光伏系统稳定运行提供了理论依据和技术支持。 本段落介绍的Simulink仿真模型是针对光伏并网逆变器低电压穿越特性的研究工具,采用boost加NPC拓扑结构,并基于MATLAB Simulink进行建模仿真。 该模型具备中点平衡SVPWM(空间矢量脉宽调制)控制和正负序分离控制功能。此外,还包含了相位锁环(PLL),确保逆变器在电网电压跌落时仍能保持稳定运行。光伏并网逆变器是太阳能光伏发电系统的核心设备之一,其主要任务是在电网电压下降到特定阈值的情况下维持并网输出能力。 SVPWM技术的应用提高了逆变器的效率,并减少了输出电流中的谐波成分;而正负序分离控制则增强了逆变器对不对称故障下电网扰动的适应性。PLL在低电压穿越过程中扮演着重要角色,通过确保与电网电压同步来维持逆变器稳定运行。 为了使用该Simulink模型进行仿真测试,需要MATLAB 2018或更高版本的支持。这是因为新版本提供了更加完善和稳定的仿真环境以及更强大的工具支持。研究人员可以在Simulink环境中搭建并执行此模型,以评估光伏逆变器在电网故障条件下的性能表现。 通过该仿真平台的研究人员可以全面测试光伏逆变器的低电压穿越能力,在实际应用中提升系统稳定性和可靠性。这不仅有助于设计者优化设备参数,也为学术界提供了研究并网逆变器行为特性的宝贵工具。
  • PV_2012_LVRT___穿_穿功率.zip
    优质
    本资料探讨了光伏发电系统在遭遇电网低电压情况下的运行稳定性与安全性,重点分析了光伏系统的低电压穿越(LVRT)能力及穿越过程中的功率特性。 光伏低电压穿越的模型效果不够理想,适用于大功率系统,在此基础上可以改进低电压控制策略。
  • 器仿真MPPT及.rar
    优质
    本研究聚焦于光伏并网逆变器的仿真技术,深入探讨了最大功率点跟踪(MPPT)算法与控制策略优化,旨在提高系统效率和稳定性。 太阳能光伏并网逆变器仿真的模型和程序包括MPPT控制器程序。
  • 穿问题三项Matlab建模细则
    优质
    本文章详细探讨了光伏并网逆变器在电网故障期间的运行特性,并提供了三项用于Matlab仿真分析的模型构建指导,以研究其低电压穿越性能。 改细则内包含三相光伏逆变器低电压穿越问题的数学模型、最大功率点跟踪原理以及低电压穿越控制策略的讲解,并附有完整模型图片,可供复现或直接使用。文件思路清晰,适合需要学习借鉴的同学参考。
  • 三相器仿真:基于SVPWM分析
    优质
    本文针对三相光伏并网系统,探讨了基于空间矢量脉宽调制(SVPWM)技术的升压逆变与并网控制策略,通过仿真验证其有效性和稳定性。 在能源结构转型与可持续发展的大背景下,光伏并网逆变器技术作为太阳能发电系统的关键组件受到全球广泛关注。三相光伏并网逆变器能够将太阳能电池板产生的直流电转换为公共电网可接受的交流电,其技术进步对于提升光伏发电效率和稳定性至关重要。 本研究深入探讨了三相光伏并网逆变器的仿真研究,并具体分析通过升压逆变与并网控制策略实现的空间矢量脉宽调制(SVPWM)方法及其效果。旨在为光伏并网逆变器的设计及优化提供理论支持和实践指导。 三相光伏并网逆变器的基本构成是PV模块、Boost升压电路、逆变器以及并网控制环节。其中,PV模块将太阳能转换成电能;Boost升压电路将不稳定的直流电压提升至稳定水平以满足逆变器需求;逆变器则负责将直流电压转化为电网可接受的交流电;而并网控制环节确保输出电力能够平滑无冲击地接入电网。 在控制策略方面,本研究重点探讨了双环控制系统。电压外环维持直流侧电压稳定性,电流内环专注于交流侧电流跟踪。这种机制有效应对发电过程中的各种变化(如天气和负载波动),保障系统稳定性和可靠性。 SVPWM技术作为电力电子领域的先进方法,在逆变器中应用显著提高了效率并降低了开关损耗。本研究利用该技术优化了逆变器的输出控制,通过精确控制电压空间矢量实现高效工作。 仿真环节是验证理论分析正确性及指导实际设备设计调试的关键步骤。本段落通过对三相光伏并网逆变器进行细致仿真分析,证明所提升压逆变与并网策略以及SVPWM方法的有效性。结果显示该系统能够在不同工况下稳定运行,并输出高质量的交流电。 综上所述,本研究从多个角度深入探讨了三相光伏并网逆变器的前沿进展及应用前景,展示了其在推动可再生能源和传统电网融合中的重要作用。随着技术进步与成本降低,未来光伏并网逆变器将在社会各领域广泛应用,并为构建绿色低碳能源体系贡献力量。