Advertisement

官方开源:EG8010单相纯正弦波逆变器驱动板资料共享-电路设计方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
简介:本项目提供EG8010单相纯正弦波逆变器驱动板的官方开源资料,包括详细的电路设计和方案说明,适用于电力电子技术研究与应用。 该项目基于EG8010和IR2110S设计了一款单相纯正弦波逆变器驱动板,包括原理图、PCB及使用说明等内容。此单相纯正弦波逆变器采用专用芯片EG8010作为控制核心,而驱动电路则采用了IR2110S。该驱动板集成了电压保护、电流保护和温度保护功能,并带有LED告警显示以及风扇控制机制。此外,用户可以通过跳线设置输出频率为50Hz或60Hz,同时具备软启动功能及死区时间调节。 EG8010是一款高度集成的数字化纯正弦波逆变器芯片,适用于DC-DC-AC两级功率转换架构或是单级工频变压器升压变换结构。它通过外接12MHz晶体振荡器来产生高精度、低失真和谐波的小型化50Hz或60Hz逆变器。该芯片采用了CMOS工艺技术,并集成了SPWM正弦发生器、死区控制电路、幅度因子乘法器、软启动机制以及保护功能,同时支持RS232串行通讯接口和128*32的液晶显示驱动模块等功能。 此项目的设计资料包括了详细的PCB布局截图。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • EG8010-
    优质
    简介:本项目提供EG8010单相纯正弦波逆变器驱动板的官方开源资料,包括详细的电路设计和方案说明,适用于电力电子技术研究与应用。 该项目基于EG8010和IR2110S设计了一款单相纯正弦波逆变器驱动板,包括原理图、PCB及使用说明等内容。此单相纯正弦波逆变器采用专用芯片EG8010作为控制核心,而驱动电路则采用了IR2110S。该驱动板集成了电压保护、电流保护和温度保护功能,并带有LED告警显示以及风扇控制机制。此外,用户可以通过跳线设置输出频率为50Hz或60Hz,同时具备软启动功能及死区时间调节。 EG8010是一款高度集成的数字化纯正弦波逆变器芯片,适用于DC-DC-AC两级功率转换架构或是单级工频变压器升压变换结构。它通过外接12MHz晶体振荡器来产生高精度、低失真和谐波的小型化50Hz或60Hz逆变器。该芯片采用了CMOS工艺技术,并集成了SPWM正弦发生器、死区控制电路、幅度因子乘法器、软启动机制以及保护功能,同时支持RS232串行通讯接口和128*32的液晶显示驱动模块等功能。 此项目的设计资料包括了详细的PCB布局截图。
  • EG8010-SPWM的大功率及原理图
    优质
    本项目介绍了一种基于EG8010芯片的SPWM控制技术实现的大功率纯正弦波逆变器设计,包含详细电路方案和原理图。 最近自己动手制作了一个24V 2000W的逆变器,并已完工,现在想分享一下成果并邀请大家提出宝贵意见或批评建议。 首先展示的是整机测试的照片,在拍摄时输出处于短路状态。从照片中可以看出正弦波的质量尚可,但由于使用了EG8010芯片,SPWM精度有限导致波形不够理想;另外死区时间较长(约1uS),过零点处表现不佳,考虑到管子的安全性未做调整。 在满载测试时(两个2100W的热得快并联)水完全沸腾。最大负载达到3000W持续了大约十秒左右,由于直流电源的压力太大而停止进一步测试。通过调节功率限制电位器将逆变器的最大输出功率控制在约2500W,在此之上机器会在不到两秒钟内自动关闭以保护自身。 短路时的反应也非常迅速,通常情况下会立即断开输出,并且由于EG8010芯片的原因,如果不断电的话过几秒后设备可能会重新启动。此外该逆变器具有良好的启动能力,例如两个并联的太阳灯(每盏功率为1000W)可以在一秒内成功启动。 设计时考虑的是2200W左右的最大输出功率,但由于直流电源的最大电流限制在100A以内只能测量到大约这个数值。不过长期测试显示当负载超过2500W时逆变器依旧可以稳定运行(连续使用时间超过十二小时)。 此外我还对前级场效应管的D极波形进行了记录和分析,以便于进一步优化设计。 在空载状态下该设备仅消耗6.642瓦的能量,这表明其具有良好的节能性能,非常适合用于太阳能等新能源系统中。所使用的环型变压器由两个叠放在一起的铁氧体磁芯组成,并且初级绕组采用1mm漆包线并联而成。 前级部分采用了四对ixfh80n10场效应管(每一对额定电流为80A,电压耐受能力达到100V),整流环节则使用了四个MUR1560二极管以及两个大容量的电解电容器。输入端用到了四个日本化工品牌的35V 1000uF电容。 后级部分由四只FQA28N50场效应管组成,输出滤波环节则包括了一个使用铁硅铝材料制作而成的磁芯线圈以及两个4.7微法拉的安规电容器。在调试过程中已经将高频臂和低频臂分别更换为两只FQL40N50以及两只FQA50N50。 经过多次短路测试,无论是在开机时、空载状态下还是满负载条件下该逆变器均能迅速响应并切断输出以保护自己。在所有这些情况下设备依然能够正常工作,并且没有发生任何损坏现象。 最后附上电路图:前级DC-DC变换器部分采用的是标准推挽式拓扑结构;驱动信号由SG3525和LM393芯片生成,具备欠压、过压以及过流保护功能。后级则是常见的全桥逆变设计,并且增加了一个高压检测单元以确保在直流电压超过一定阈值时辅助电源才能开启工作。 SPWM波形发生器采用EG8010结合IR2110芯片实现,同时通过监测管子上的压降来提供短路保护机制。
  • 基于STM32的
    优质
    本项目介绍了一种基于STM32微控制器的高效正弦波逆变器设计方案,包括硬件电路图和软件实现方法。旨在为用户提供稳定的交流电源解决方案。 给大家分享一个基于STM32单片机的正弦波逆变器设计项目。 概述:我们知道,市电或其他交流电源可以通过二极管或可控硅的单向导电性整流成直流电以供需要使用直流电的应用场合。将交流电转换为直流电的过程称为整流或者顺变。那么什么是逆变呢?我们自然会想到,它应该是把直流电转化为交流电的过程。逆变电源相对于整流器而言,通过半导体功率开关器件的开通和关断来实现这一过程,即将直流电变成交流电的一种装置。这种设备也被称为逆变器。 接下来详细介绍逆变器主要单元电路的设计: 一.电池输入电路 二.辅助电源电路 1. 适用于12V电池输入的辅助电源设计 2. 针对24V至48V范围内的多路隔离辅助电源方案 三.高频逆变器前级电路的设计 1. 基于闭环控制技术下变压器匝数比的选择与优化 2. 准开环配置下的变压器匝数比设计方法 四.高频逆变器后级电路的实现 1. 米勒电容对高压MOS管安全运行的影响及对策分析 2. 使用IR2110驱动芯片时需注意的问题点 3. 正弦波逆变器中LC滤波网络参数的选择与计算 五.逆变器的部分保护电路设计 1. 反向接线的防护措施 2. 电池低电压告警机制 3. 过载和短路情况下的电流限制及断电策略 4. IGBT驱动控制以及其在过流故障时的安全保障
  • 优质
    单相正弦波逆变器电源是一种将直流电转换为高质量正弦波交流电的设备,适用于家庭、办公和工业等多种场景下的电子电器供电。 单相正弦波逆变电源是一种电力转换装置,能够将直流电(如电池或太阳能板)转化为与电网同步的交流电,并输出高质量的正弦波电流,适用于各种电子设备。本段落档深入探讨了该系统的架构设计、工作原理以及优化方法。 在方案论证阶段,设计团队对比了几种逆变策略后选择了两级变换方式:先通过Boost升压电路提升直流电压,再用逆变器将此升高后的直流电转换为正弦波交流电。选择这种方案的原因在于需要把24V的输入电压转变为高于负载需求的26V交流输出,而Boost电路能够高效地完成这一任务。 理论分析与计算部分强调了提高效率的重要性,这通常通过优化开关管的工作模式和选取合适的电感、电容参数来实现。例如,选择适当的Boost电感和电容对于稳定输出电压及控制系统的动态特性至关重要;同时逆变器的滤波电路设计需减少谐波含量以保证输出接近理想正弦波形。 在硬件设计中,涉及开关管、控制器、滤波与保护电路的设计。软件部分则负责生成精确调控信号(如PWM算法),确保系统能够根据负载变化调整电压水平,并具备液晶显示、过温及过流保护等安全功能。 测试方案和结果展示了逆变电源的实际性能表现。通过使用示波器、功率分析仪等多种工具,团队评估了不同负载条件下的效率与输出质量以及异常情况下的保护机制可靠性。 总结来看,单相正弦波逆变电源以其高能效性、紧凑结构及出色的稳定性成为现代电子设备的理想选择。它克服了传统线性逆变方式的诸多缺点(如低效率和体积庞大),随着高频化技术的发展,在小型化领域也取得了显著进展,并在高新技术应用中发挥了重要作用,推动了设备的小型化趋势。未来,单相正弦波逆变电源的技术将因新材料与新技术的进步而更加成熟,其应用场景也将更为广泛。
  • 基于STM32的
    优质
    本设计提出了一种基于STM32微控制器的正弦波逆变器方案,通过SPWM技术实现高质量正弦波输出,适用于家用和工业电源转换场景。 我对逆变器有浓厚的兴趣,并参考了多种资料后进行了两次改版,最终制作出了这款纯正弦波逆变器。其设计功率为300W,在DC升压及SPWM生成正弦波的过程中采用STM32C8T6作为主控芯片并提供高压、低压、过载和短路保护功能。目前该项目已开源,希望与同样热爱逆变技术的朋友交流分享经验,共同进步。 在调试过程中我发现5片STM32因CPU短路而损坏,计划进一步调查原因以防止未来出现类似问题。我的设备可以驱动手电钻、豆浆机、电视机以及一台台式电脑等电器。然而,在使用豆浆机制作豆制品时几秒钟后触发了保护措施;另外在给台式电脑供电10分钟后电池电量耗尽。 逆变器的输入电路设计用于滤除来自直流电源系统的纹波和干扰,同时防止其对其他设备产生影响。该部分通常由LC组成,在实际应用中可能省略L以降低成本或满足特定要求。 辅助电源电路为PWM信号芯片、运算放大器以及单片机等小信号部件提供稳定且纯净的供电源。对于12V电池输入的情况,可以通过RC滤波将电压调整至适合PWM芯片工作的范围内;而在更严格的要求下,则会采用升压和L7812降压的方式确保输出稳定的12V。 针对更高电压(如24-48伏)的应用场景,我设计了一种自激开关式降压电路来替代线性稳压器以减少发热损耗。此外,在需要多路隔离辅助电源的情况下,则推荐使用反激式开关电源方案实现需求。
  • .doc
    优质
    本文档详细介绍了单相正弦波逆变电源的设计方案,包括系统架构、关键电路模块分析以及控制策略,并探讨了实际应用中的性能优化方法。 本单相正弦波逆变电源设计采用12V蓄电池作为输入电源,并输出36V、50Hz的标准正弦波交流电。该系统通过推挽升压与全桥逆变两级变换实现,其中前级的推挽升压电路使用SG3525芯片进行控制并设有闭环反馈;后一级则利用IR2110驱动芯片执行全桥逆变操作,并借助U3990F6生成SPWM信号。输出端采用电流互感器采样实现双重反馈,增强了系统的稳定性。 此外,在保护机制方面,本设计涵盖了过载、短路及空载等多重安全防护措施,确保电源的可靠性和安全性。通过AD637芯片将交流电压转换为真有效值后进行进一步处理和监控。
  • 图汇总
    优质
    本资料汇集了多种设计精良的纯正弦波逆变器电路图,旨在为电子工程师和爱好者提供全面的设计参考与技术指导。 该系统主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器以及点阵液晶显示屏。其中,直流升压部分将输入电压升高至母线的直流电压峰值以上;正弦逆变部分则把母线上的直流电转换为交流电,并通过输出滤波器产生纯净的正弦式电流。同时,采样电路会监测母线电压、电流以及输入和输出端的各项参数,以实现短路保护、过压欠压保护及过流保护等功能,并确保闭环稳压控制的有效性。
  • 优质
    简介:本文探讨了三相正弦波变频电源设计方案,详细分析了其工作原理、硬件架构及软件控制策略,旨在提高电力电子设备的性能和效率。 三相变频电源的主电路及控制电路设计为三套独立的单相电源系统。主电路采用交一直一交结构,包括整流器、直流滤波器、逆变器、交流滤波以及变压器等组成部分。
  • 12V 1000W (含原理图和 PCB 文件)-
    优质
    本项目提供一款高效稳定的12V 1000W纯正弦波逆变器设计方案,包括详细的电路原理图及PCB源文件。适合电子爱好者与工程师研究学习使用。 美国Vicor公司是全球领先的高密度电源模块制造商,并且也是唯一能够大规模生产采用零电压、零电流技术的电源模块的企业。该公司提供的产品包括DC-DC、AC-DC转换器,以及隔离与非隔离型电源模块。 其中,VICOR公司的核心技术之一为“零电流”开关,它使变换器的工作频率达到1MHz,效率超过80%。一款通用正弦波逆变器具备以下特性:它可以设计成适用于多种输入电压(如12V、24V、36V和48V),并且在12V的输入下可以长时间提供高达1000W的功率输出。这款逆变器不仅可以用于光伏等新能源领域,还适合车载供电及野外应急电源使用场景,并且可在停电时作为家庭备用电源。 设计目标包括: - 支持多种电压。 - 以12V为输入可长期承载至少1000瓦负载。 - 在12V输入下效率超过90%。 - 具备灵敏的短路保护机制,确保长时间输出短路不会损坏设备或烧毁保险丝。 该逆变器不仅能够满足设计目标,在实际测试中还表现出更优异的表现。例如,在12伏特电压环境下可以连续承载高达1200瓦负载,并且效率达到92%以上。此外,无论是在空载还是带载情况下发生短路时均能有效保护设备不受损坏。 在硬件实现方面,逆变器的前级采用了SG3525驱动芯片和准闭环控制策略来优化性能;同时使用光耦隔离确保安全操作。DC-DC功率主板采用推挽式设计,并通过精心挑选变压器绕组材料与尺寸以适应不同输入电压的需求,从而保证了系统的高效、稳定运行。 综上所述,这款逆变器凭借其灵活性和高性能表现,在多个领域中都具有广泛的应用前景。
  • 500W图原理
    优质
    本资料提供了一种功率为500瓦的纯正弦波逆变器的设计方案,详细阐述了其工作原理和电路图,适用于需要高质量电力供应的场合。 这是一款关于DC/AC的500W纯正弦波逆变器原理图。