Advertisement

基于STM32 HAL库的串口DMA发送数据测试代码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:RAR


简介:
本简介提供了一个使用STM32 HAL库实现串口通过DMA方式发送数据的示例代码。该代码旨在帮助开发者理解和应用高效的UART通信技术,适用于嵌入式系统开发。 STM32HAL库是意法半导体为STM32系列微控制器设计的一种高级抽象层库,它简化了开发者对STM32硬件资源的操作。本段落将深入探讨如何使用该库通过串口进行DMA(直接内存访问)发送数据以实现高效的数据传输,并基于正点原子阿波罗开发板上的STM32H743IIT6芯片展开实践。 首先了解一下STM32H743IIT6,这是一款高性能低功耗的微控制器。它属于STM32H7系列,配备强大的双核Cortex-M7和Cortex-M4处理器,并具备高速浮点运算能力。此外,该款微控制器拥有丰富的外设接口,包括多个串行通信接口,在各种应用中表现出色,尤其是在需要高速数据传输的场景下。 在嵌入式系统中,串口通信是一种常见的数据交换方式。STM32的串口支持多种工作模式如UART(通用异步收发传输器)和USART(通用同步异步收发传输器)。在STM32HAL库中,这些功能被封装在`HAL_UART`模块下,并且DMA用于实现无CPU干预的数据传输,从而提高系统效率。 为了使用串口进行DMA发送数据,我们需要完成以下步骤: 1. 初始化STM32 HAL库:通过调用`HAL_Init()`函数初始化系统时钟并配置相应的时钟源。这确保了所有外设可以正常工作。 2. 配置串口:利用`HAL_UART_Init()`函数设置波特率、数据位数、停止位和校验等参数,例如将串口1的波特率设定为115200bps,并使用8位数据长度、无奇偶校验及一个停止位。 3. 配置DMA:选择适当的DMA通道并调用`HAL_DMA_Init()`函数进行初始化。这包括设置传输方向、优先级和数据类型等参数,同时启用相应的时钟源以支持DMA操作。 4. 连接串口与DMA:使用`HAL_UART_Transmit_DMA()`启动串口的DMA发送功能。该过程需要提供一个包含待发数据缓冲区地址及长度的信息。 5. 中断处理:当传输完成或发生错误时,将触发中断请求。通过定义回调函数如`HAL_UART_TxCpltCallback()`和`HAL_UART_ErrorCallback()`来管理这些事件。 6. 发送启动与状态检查:调用`HAL_UART_Transmit_DMA()`以开始数据发送过程,在主程序循环中等待发送完成,并定期查询串口的状态,直到确认传输结束。 7. 安全性及性能优化:在实际应用环境中,应考虑添加错误处理机制来防止数据溢出或丢失。同时根据具体需求调整DMA的优先级分配策略以确保最佳系统效率。 通过分析和修改实验4中的相关示例代码(包括配置文件、主程序以及可能存在的中断服务函数),可以更深入地理解STM32串口DMA发送技术的应用细节。这种方法利用了STM32H743IIT6的强大性能及内置DMA功能,在不占用CPU资源的情况下实现了连续数据传输,特别适用于大数据量和实时性要求高的应用场景中。掌握这一技能将显著提升你的嵌入式系统设计能力。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32 HALDMA
    优质
    本简介提供了一个使用STM32 HAL库实现串口通过DMA方式发送数据的示例代码。该代码旨在帮助开发者理解和应用高效的UART通信技术,适用于嵌入式系统开发。 STM32HAL库是意法半导体为STM32系列微控制器设计的一种高级抽象层库,它简化了开发者对STM32硬件资源的操作。本段落将深入探讨如何使用该库通过串口进行DMA(直接内存访问)发送数据以实现高效的数据传输,并基于正点原子阿波罗开发板上的STM32H743IIT6芯片展开实践。 首先了解一下STM32H743IIT6,这是一款高性能低功耗的微控制器。它属于STM32H7系列,配备强大的双核Cortex-M7和Cortex-M4处理器,并具备高速浮点运算能力。此外,该款微控制器拥有丰富的外设接口,包括多个串行通信接口,在各种应用中表现出色,尤其是在需要高速数据传输的场景下。 在嵌入式系统中,串口通信是一种常见的数据交换方式。STM32的串口支持多种工作模式如UART(通用异步收发传输器)和USART(通用同步异步收发传输器)。在STM32HAL库中,这些功能被封装在`HAL_UART`模块下,并且DMA用于实现无CPU干预的数据传输,从而提高系统效率。 为了使用串口进行DMA发送数据,我们需要完成以下步骤: 1. 初始化STM32 HAL库:通过调用`HAL_Init()`函数初始化系统时钟并配置相应的时钟源。这确保了所有外设可以正常工作。 2. 配置串口:利用`HAL_UART_Init()`函数设置波特率、数据位数、停止位和校验等参数,例如将串口1的波特率设定为115200bps,并使用8位数据长度、无奇偶校验及一个停止位。 3. 配置DMA:选择适当的DMA通道并调用`HAL_DMA_Init()`函数进行初始化。这包括设置传输方向、优先级和数据类型等参数,同时启用相应的时钟源以支持DMA操作。 4. 连接串口与DMA:使用`HAL_UART_Transmit_DMA()`启动串口的DMA发送功能。该过程需要提供一个包含待发数据缓冲区地址及长度的信息。 5. 中断处理:当传输完成或发生错误时,将触发中断请求。通过定义回调函数如`HAL_UART_TxCpltCallback()`和`HAL_UART_ErrorCallback()`来管理这些事件。 6. 发送启动与状态检查:调用`HAL_UART_Transmit_DMA()`以开始数据发送过程,在主程序循环中等待发送完成,并定期查询串口的状态,直到确认传输结束。 7. 安全性及性能优化:在实际应用环境中,应考虑添加错误处理机制来防止数据溢出或丢失。同时根据具体需求调整DMA的优先级分配策略以确保最佳系统效率。 通过分析和修改实验4中的相关示例代码(包括配置文件、主程序以及可能存在的中断服务函数),可以更深入地理解STM32串口DMA发送技术的应用细节。这种方法利用了STM32H743IIT6的强大性能及内置DMA功能,在不占用CPU资源的情况下实现了连续数据传输,特别适用于大数据量和实时性要求高的应用场景中。掌握这一技能将显著提升你的嵌入式系统设计能力。
  • STM32利用DMA进行
    优质
    本文章介绍了如何在STM32微控制器上使用直接存储器访问(DMA)技术来实现高效的串行通信数据传输。通过配置USART和DMA外设,可以显著提升应用程序的数据处理效率,减少CPU的占用率。适合需要高数据吞吐量的应用场景。 通过按下KEY0来控制串口1以DMA方式发送数据。当按键被按下后,开始进行DMA传输,并且在LCD上显示传输进度。
  • STM32 HAL与STM32CubeMXDMA配置
    优质
    本篇文章详细介绍了如何使用STM32 HAL库和STM32CubeMX工具进行串口DMA传输的配置,旨在帮助开发者更高效地完成硬件抽象层编程。 STM32 HAL库是由ST公司开发的一种高级抽象层库,为STM32微控制器提供了一套标准化、模块化的编程接口。该库简化了开发者的工作流程,并使代码编写更加高效且易于移植。借助于STM32Cube MX配置工具,我们可以迅速设置和初始化各种外设功能,包括串口通信和DMA(直接存储器访问)。 在嵌入式系统中,串口通信是设备间数据传输的重要手段之一。STM32的串口支持多种模式如UART(通用异步收发传输器)及USART(通用同步异步收发传输器)。HAL库提供了用于管理这些功能的一系列API接口,包括发送和接收数据、设置波特率、校验位以及停止位等。 DMA是一种硬件机制,在无需CPU干预的情况下直接在内存与外设之间进行数据传输。使用STM32中的串口DMA功能可以实现大容量的数据高速传输;当大量数据需要被传送时,CPU可以在执行其他任务的同时保持高效运行。此外,STM32的DMA控制器支持多个通道,并且每个通道都能够独立配置以服务不同的设备。 利用STM32Cube MX配置工具设定串口和DMA的过程如下: 1. 启动并选择目标STM32系列芯片,在项目中加载相应的配置。 2. 在外设设置界面找到需要使用的串口(如USART1),开启它,并根据需求调整波特率、数据位数、停止位及校验方式等参数。 3. 开启串口的DMA功能。在该设备的配置界面上勾选“启用DMA”,并选择适合的数据传输通道和服务模式(单次或循环)。 4. 配置DMA控制器,进入相关界面后选定与特定外设关联的通道,并设定数据传输方向、大小和优先级等参数。 5. 生成初始化代码。STM32Cube MX会自动生成包含串口及DMA初始设置的HAL库源码文件(包括`.c` 和 `.h` 文件)。 6. 编写应用程序,利用HAL提供的API来启动并控制串口与DMA的数据传输过程,例如通过调用 `HAL_UART_Transmit_DMA()` 或者 `HAL_UART_Receive_DMA()` 等函数。 在名为“USART_DMA_TEST1”的示例项目中通常会展示如何使用STM32 HAL库进行串口DMA数据传输。这类测试代码一般包括初始化步骤、启动和中断处理机制等,通过学习这些内容可以帮助开发者更好地理解并应用实际项目的相关功能。 综上所述,结合了灵活的串口通信与高效的DMA技术使得STM32在大数据量快速传输方面具有显著优势;而借助于STM32Cube MX工具,则能够方便地设定所需参数以实现高效的数据交换方案。
  • STM32 DMA HAL接收
    优质
    本简介探讨了如何利用STM32微控制器的DMA与HAL库实现高效的串口数据接收功能,简化编程复杂度并提高通信效率。 STM32串口接收DMA HAL是STM32微控制器中的一个高级硬件抽象层(HAL)实现方式,利用直接存储器访问技术(DMA),通过串行通信接口(UART)高效地处理数据的接收任务,在嵌入式系统设计中,串口通信是一种常见的设备间数据传输方法。而采用DMA技术可以显著提升传输速度,并且减少CPU的工作负担。 在STM32系列芯片上,通用异步收发传输器(UART)提供了一种全双工的数据发送与接收方式,适用于调试、传感器数据的交换等多种应用场景。不同型号的STM32微控制器配备有多个UART接口,具体数量取决于具体的硬件配置。 直接存储器访问(DMA)是现代微处理器中的一个重要特性,它允许外部设备独立于CPU直接进行内存操作。在串口通信中使用DMA技术时,在接收到数据后,无需CPU介入即可自动将这些信息传输至指定的缓冲区地址内,从而释放了宝贵的计算资源用于执行其他任务。 STM32 HAL库由STMicroelectronics公司提供并维护,旨在简化STM32微控制器上的软件开发流程。该库为开发者提供了与具体硬件架构无关的一系列API接口函数,使得串口接收DMA操作更加便捷和直观。通过调用这些预定义的HAL API函数,用户能够轻松地完成UART配置、设置DMA参数以及启动或停止数据接收等任务。 以下是使用STM32 HAL进行串口接收DMA操作的一些关键步骤: 1. **初始化串行通信接口**:利用`HAL_UART_Init()`这一API来设定相关参数如波特率、数据位数、停止位和校验方式。 2. **配置直接存储器访问(DMA)**:调用`HAL_DMA_Init()`函数以指定传输的源地址(通常是UART接收缓冲区)、目标内存位置及传输量等信息。 3. **建立串口与DMA之间的联系**:通过`HAL_UARTEx_ReceiveDMA()`来连接特定的DMA通道和UART接收功能,并设置相应的完成或错误回调机制。 4. **启动数据接收过程**:使用`HAL_UART_Receive_DMA()`函数开始执行DMA操作。一旦启动,系统将自动处理所有接收到的数据并在完成后触发指定的动作。 5. **中断事件管理**:在由上述步骤中定义的回调函数内检查接收状态,并根据需要进行进一步的操作或分析。 6. **控制数据流**:通过调用`HAL_UART_DMAPause()`, `HAL_UART_DMAResume()` 或者 `HAL_UART_DMAStop()`等命令来暂停、恢复或者停止DMA操作。 7. **错误处理机制**:利用提供的丰富异常管理功能,如超时、溢出和帧错等情况的检测与响应策略,确保程序稳定运行并合理应对各种故障场景。 在实践应用中,理解STM32串口接收DMA HAL的工作原理及其配置方法对于提高系统性能至关重要。此外,在多任务环境下还需要注意如何有效地管理和优化内存使用以及中断处理流程。
  • STM32:ADC、DMA传输
    优质
    本项目通过STM32微控制器实现ADC数据采集,并利用DMA进行高效的数据传输至缓存区,最后通过串口将采集到的信息发送出去。适合初学者了解嵌入式开发中常见外设的协同工作原理。 STM32测试程序使用ADC+DMA+串口发送的全代码奉献(操作寄存器)。
  • STM32利用DMA进行
    优质
    本简介介绍如何在STM32微控制器上使用直接存储器访问(DMA)技术来实现高效的数据传输,具体是通过DMA控制串行外设接口(SPI)或通用异步收发传输器(UART)进行数据发送的方法。 简化正点原子的DMA发送程序,并添加DMA发送中断,在发送中断内更改引脚电平。
  • STM32 HAL中断和接收
    优质
    本文将详细介绍在STM32微控制器中使用HAL库实现串口通信的中断模式下的数据发送与接收方法。 实验目的: 使用STM32串口中断进行发送和接收 实验器材: STM32F103C8T6 OLED 硬件资源: SCL连接到PA7 SDA连接到PB9 TX连接到PA9 RX连接到PA10
  • 编写STM32程序实现DMA方式
    优质
    本教程详细介绍如何使用STM32微控制器通过直接内存访问(DMA)技术实现高效的数据传输,具体讲解了利用DMA方式进行串口通信数据发送的方法和步骤。 为了在STM32上通过串口(通常是USART)使用DMA(直接内存访问)发送数据,请按照以下步骤操作: 1. 初始化串口:配置USART参数,如波特率、数据位、停止位和校验位。 2. 初始化DMA:配置DMA通道以从内存传输数据到USART的数据寄存器。 3. 配置DMA中断(可选):为了知道何时完成DMA传输,可以设置一个中断。 4. 发送数据:将要发送的数据放入DMA指定的内存区域,并启动DMA传输。
  • STM32】标准USART DMA 空闲状态下仿printf
    优质
    本教程讲解如何使用STM32标准库实现USART与DMA结合进行数据传输,并演示在串口空闲状态下模拟printf函数发送信息的方法。 使用STM32F429IGT6单片机和Keil MDK 5.32版本进行开发,通过SysTick系统滴答定时器实现延时功能。LED_R、LED_G、LED_B分别连接到PH10, PH11, PH12引脚上。USART1配置为波特率115200,无校验位和一位停止位;PA9用于TX,PA10用于RX,并且开启了TC(传输完成)中断和IDLE(空闲)中断以模拟printf发送功能。 在串口通信中采用DMA方式进行数据收发。当接收到的数据触发了串口的空闲中断时,在对应的中断服务函数内重新设置DMA剩余传输数据数量寄存器值,确保下次接收操作从串口缓冲区的第一个字节开始进行处理。此外,该系统还配备了CRC校验功能,并使用以太网多项式0x4C11DB7作为CRC-32计算的基础。 在Keil 5的下载配置中包括了对FLASH与SRAM资源的支持。