Advertisement

惯性导航与GNSS组合导航算法:INS-GNSS集成

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了惯性导航系统(INS)与全球卫星导航系统(GNSS)相结合的组合导航技术,重点分析了INS-GNSS集成算法在提高定位精度和可靠性方面的应用。 INS-GNSS松散集成惯性导航/GNSS松散集成导航算法是一种结合了惯性测量单元(IMU)与全球卫星定位系统(GNSS)的导航技术,通过将两者的数据进行融合处理以提高系统的定位精度、可靠性和鲁棒性。该方法利用IMU提供连续的位置和姿态估计,并在GNSS信号可用时对其进行校正,从而实现在各种环境下的高效导航功能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GNSSINS-GNSS
    优质
    本研究探讨了惯性导航系统(INS)与全球卫星导航系统(GNSS)相结合的组合导航技术,重点分析了INS-GNSS集成算法在提高定位精度和可靠性方面的应用。 INS-GNSS松散集成惯性导航/GNSS松散集成导航算法是一种结合了惯性测量单元(IMU)与全球卫星定位系统(GNSS)的导航技术,通过将两者的数据进行融合处理以提高系统的定位精度、可靠性和鲁棒性。该方法利用IMU提供连续的位置和姿态估计,并在GNSS信号可用时对其进行校正,从而实现在各种环境下的高效导航功能。
  • GNSS/INS程序示例
    优质
    本程序示例展示了如何集成全球卫星导航系统(GNSS)与惯性导航系统(INS),实现高精度定位和姿态测量,适用于自动驾驶、无人机等应用领域。 GNSS/INS组合导航例程涵盖了不同的组合模式以及实验结果。
  • GNSS/INS程序示例
    优质
    本项目提供了一个集成全球卫星导航系统(GNSS)与惯性导航系统(INS)的组合导航程序实例,适用于自动驾驶、无人机和机器人技术等领域。 GNSS/INS组合导航例程涵盖了不同的组合模式及其实验结果。
  • +C++ INS GPS
    优质
    本项目专注于研究和开发惯性导航系统(INS)及其与全球定位系统(GPS)结合的高精度导航技术,并运用C++进行算法实现,以提高复杂环境下的导航性能。 惯性导航系统(INS, Inertial Navigation System)是一种基于物理传感器如加速度计和陀螺仪来连续计算物体位置、速度及姿态的自主导航技术。“惯性导航+纯惯解算+C++编程实现+GPS组合导航”这一主题涵盖了惯性导航的基本原理,纯惯性解算算法及其C++编程实践,并探讨了如何结合全球定位系统(GPS)以提高定位精度。 1. **基本原理**: 惯导系统的运作核心在于测量物体的加速度和角速度。利用加速度计获取沿三个轴线性的加速度数据,陀螺仪则用来捕捉旋转运动中的角速度信息。通过连续积分这些原始信号,可以推算出物体的位置、速度及姿态变化情况。然而,由于长时间累积误差的存在,惯性导航在没有外部校正的情况下精度会逐渐下降。 2. **纯惯性解算**: 纯惯性解算是指独立于任何外界参考源(如GPS)仅依靠内部传感器数据进行的导航计算过程。此方法需解决的主要问题包括漂移和噪声影响。漂移是由传感器误差累积导致位置及姿态估计偏移,而噪声则是随机测量偏差。通常采用滤波算法(例如卡尔曼滤波或无迹卡尔曼滤波技术)来减少这些因素对解算结果的影响。 3. **C++编程实现**: 使用C++语言开发惯性导航系统时,可以设计数据结构存储传感器读数,并编写相应算法处理和更新导航状态。利用面向对象特性如类的定义能够提高代码组织性和复用性。例如,“Sensor”类可表示加速度计或陀螺仪功能;“NavigationSystem”类则负责执行积分运算及滤波操作;而“Filter”类实现特定类型的滤波算法。 4. **组合导航(GNSS-INS)**: 将GPS与惯导系统结合使用,即所谓的GNSS-INS技术,能有效整合两者优势。GPS提供精确的位置信息但可能受环境因素影响;相反地,惯性导航则能在无外部干扰条件下持续输出定位数据却存在长期精度不足的问题。通过定期利用来自GPS的校准信号纠正惯导漂移误差,可以显著提升整体系统的稳定性和准确性。 5. **系统设计与实现**: 开发一个完整的GNSS-INS组合导航解决方案不仅需要编写核心算法逻辑,还需要考虑实时性能、数据处理效率以及硬件接口的设计。这可能涉及多线程技术用于传感器信号的即时读取和计算优化以减少复杂度需求;同时也要具备良好的故障检测及容错机制确保在GPS失效的情况下依旧提供可靠的导航服务。 综上所述,“惯性导航+纯惯解算+C++编程实现+GPS组合导航”这一主题涵盖了从硬件层面的数据处理到高级算法设计,再到软件工程的多个方面。掌握这些知识对于开发高效且准确的自主定位与导航系统至关重要。
  • _GPSINS_C++源码_GPS_INS
    优质
    本项目专注于开发高精度惯性导航系统(INS)与全球定位系统(GPS)的数据融合技术,采用C++编写核心算法代码。旨在提供一个可靠的GPS-INS导航解决方案库。 GPS_INS_Navigation_惯性导航解算_GPS,INS组合_惯性导航gps_惯性导航c++_GPS_源码
  • SKM-4DX GNSS+INS车载模块规格书_V1.03_Datasheet.pdf
    优质
    本资料详细介绍了SKM-4DX GNSS+INS车载组合惯性导航模块的技术规格和性能参数,适用于研发与集成。 SKM-4DX是一款专为车载导航领域设计的高性能组合导航模块,采用GNSS与INS(惯性导航系统)技术相结合的方式进行定位。该产品配备了高精度六轴惯性传感器,并运用成熟的惯导算法,在无需接入里程计或速度信号的情况下仍能提供精准定位服务,且安装简便,不受特定环境限制,在隧道、车库等复杂环境中依然能够保持高精度的车辆位置信息。 SKM-4DX模块体积小巧,采用SMD焊盘设计,支持标准取放及回流焊接工艺。其特点包括高灵敏度、低能耗以及强大的抗干扰能力等,适用于各种车载导航应用场景。
  • 基于MATLAB的GNSS/INS程序
    优质
    本项目基于MATLAB开发了一套GNSS/INS松组合导航系统程序,有效融合了GPS与惯性传感器数据,提高了导航系统的精度和可靠性。 从惯导与卫星导航数据的轨迹生成开始,利用这些轨迹数据来产生陀螺仪和加速度计的数据。然后使用生成的陀螺仪和加速度计数据进行惯性导航解算,并验证仿真的陀螺仪和加速度计数据的有效性。最后,采用仿真得到的GPS和INS(惯性导航系统)数据来进行松组合处理。
  • 基于C语言的低本MEMS INSGNSS滤波系统
    优质
    本研究设计了一种基于C语言开发的低成本MEMS INS和GNSS结合的惯性导航系统,采用序贯卡尔曼滤波技术优化定位精度。 本程序模仿严老师的MATLAB程序编写了一个低成本组合导航系统。对于标准Kalman滤波器而言,在增益计算公式(5.3-29c)中涉及矩阵求逆运算,当量测维数较高时会导致较大的计算负担。序贯滤波是一种方法,它将高维度的测量更新分解为多个低维度的测量更新过程,从而有效减少所需的矩阵求逆操作数量。 通过使用序贯滤波技术,在Kalman增益计算中的矩阵求逆问题可以简化成标量倒数运算,有助于降低整体计算负担并提高数值稳定性。若量测噪声方差阵Rk不是对角形式的,则可通过三角变换将它转换为对角化处理后进行后续操作;特别地,当该噪声方差阵是常值时,在滤波器初始化阶段只需执行一次三角分解即可完成相关准备工作。
  • SINS+GNSS的Matlab仿真
    优质
    本研究探讨了SINS(惯性导航系统)与GNSS(全球导航卫星系统)结合的算法,并在Matlab环境中进行仿真实验,验证其性能。 卫星信号往往非常微弱且容易受到干扰,但其导航系统的位置误差不会随着时间累积。卫星导航与惯性导航具有良好的互补特性,通过组合使用这两种技术可以充分发挥各自的优势。 所描述的算法是一种低精度组合导航方法,适合初学者学习和理解相关知识。然而需要注意的是,该算法没有考虑空间杆臂误差以及时间不同步误差的因素。 此算法采用了松耦合架构,在这种结构中,GPS与惯性导航系统(INS)独立工作并各自提供导航参数的结果。为了提高整体的导航精度,通常会将GPS的位置和速度信息输入到卡尔曼滤波器中,并且还将INS的位置、速度及姿态数据作为滤波器的输入。通过比较两者的差异,构建误差模型来估计惯性系统的误差。利用这些误差对惯导结果进行修正,从而获得综合的速度、位置以及姿态导航输出。 松耦合结构的优点在于其实现相对简单并且具有较高的稳定性。在开环模式下,它可以提供三个独立的导航解决方案:原始INS数据、原始GPS信息和组合后的导航结果;而在闭环状态下,则可以给出两个独立的结果:原始GPS信息与组合后得到的导航解。 然而,当可用卫星数量低于最低需求时,GPS可能会暂时失效。此外由于卡尔曼滤波器输出的时间相关性问题,对测量噪声不相关的假设可能受到干扰,进而影响整个系统的性能。
  • 全球卫星的结原理及应用(GNSSINS的基本介绍)
    优质
    本课程介绍全球卫星导航系统(GNSS)和惯性导航系统(INS)的工作原理及其在定位、导航中的应用,并探讨两者融合技术。 这段PPT介绍涵盖了惯性导航系统的发展历史以及全球卫星导航系统的历史,并简要概述了这两种导航方式的优缺点。此外,还解释了为何将两者结合使用的原因。