Advertisement

自动驾驶的纵向控制算法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于开发高效的自动驾驶车辆纵向控制算法,旨在实现精确的速度调节、平稳的加减速以及优化燃油效率,以提升驾驶安全性和乘坐舒适度。 这篇论文探讨了智能驾驶领域中的纵向控制算法,并特别关注卡车类车辆的纵向控制方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于开发高效的自动驾驶车辆纵向控制算法,旨在实现精确的速度调节、平稳的加减速以及优化燃油效率,以提升驾驶安全性和乘坐舒适度。 这篇论文探讨了智能驾驶领域中的纵向控制算法,并特别关注卡车类车辆的纵向控制方法。
  • 研发--车辆力学-力学
    优质
    专注于自动驾驶技术的研发工作,尤其在车辆动力学领域有着深厚的研究背景和实践经验。特别擅长于纵向动力学相关算法的设计与优化,致力于提升自动驾驶系统的性能和安全性。 辅助驾驶开发涉及算法设计与应用,其中车辆动力学是重要组成部分之一,特别是纵向动力学的研究。
  • 车辆系统与横综合管
    优质
    本研究探讨了车辆自动驾驶系统中纵向和横向运动控制技术的融合方法,旨在提升驾驶安全性和舒适度。通过协调加减速及转向操作,实现高效、智能的道路行驶策略。 为了提升车辆自动驾驶系统的运动性能,本研究结合模糊逻辑与滑模控制理论设计了一种综合控制系统,用于协调管理前轮转向角度、发动机节气门开度、制动液压及主动横摆力矩等参数。该系统使车辆能够在期望速度下沿着理想道路轨迹行驶,并增强其在各种驾驶条件下的操控稳定性。仿真结果显示,这种纵向和横向运动的集成控制方法能够显著改善不同路况下的跟踪性能与动态响应能力,在自动驾驶应用中展现出有效性。
  • 基于MatlabMPC代码
    优质
    本项目提供了一种基于Matlab环境下的自动驾驶横向模型预测控制(MPC)算法实现。通过优化路径跟踪性能,该代码为车辆自主导航系统开发提供了有效工具。 根据Apollo开源框架中的MPC算法,将其改写成MATLAB的m函数,用于自动驾驶横向控制的仿真,并指导自动驾驶控制算法的开发。代码注释应清晰易懂。
  • 基于力学误差模型耦合——复现Apollo MPC
    优质
    本文探讨了基于动力学误差模型的自动驾驶技术,重点在于实现车辆横纵向运动的精准控制,并详细复现了Apollo平台中的MPC(模型预测控制)算法。通过优化该算法,提升了自动驾驶系统的稳定性和响应速度,为复杂驾驶环境下的安全行车提供了有力保障。 本段落介绍了基于动力学误差模型的自动驾驶横纵向耦合控制方法,并使用了Apollo平台中的横向和纵向控制系统作为参考。该系统采用MPC(模型预测控制)算法,在一个控制器中同时处理横向与纵向,实现两者之间的协同控制。通过MATLAB与Simulink联合仿真进行测试验证。 在纵向控制方面,已经完成了油门刹车的标定工作,并能够跟踪五次多项式换道轨迹,效果良好。本段落包含三套代码:两套采用面向对象编程方式编写(一套仅对控制量施加约束条件;另一套则同时限制了控制量及其变化率),还有一套使用的是传统的面向过程编程方法。 以上内容构成了一个完整的横纵向耦合控制系统设计与实现方案,为自动驾驶车辆的精确路径跟踪提供了技术支持。
  • 技术:结合PID和MPC车横精准策略
    优质
    本文探讨了在电动车中应用PID与模型预测控制(MPC)相结合的方法,以实现车辆横向及纵向运动的精确操控,提升自动驾驶系统的性能。 在自动驾驶技术的研究中,本段落探讨了一种基于PID与MPC的电动车横向纵向高精度控制策略。其中,在车辆横纵向控制方面,纵向采用PID控制器来调整前轴左右车轮力矩以实现加减速操作;而横向则运用了模型预测控制(MPC)方法。 对于纵向方向上的速度调节,传统的油门刹车标定表中的PID控制器被改进为适用于电动车的版本。它通过精确地控制轮端力矩实现了车辆在纵向方向上的加速与减速功能。 至于横向运动控制,则是基于三自由度车辆动力学模型构建,并假设轮胎工作于线性区间内。结合MPC结构特性,利用状态轨迹法对非线性动力学模型进行线性化处理并离散采样,以实现精确的横向定位控制。车辆参考路径由一系列五次多项式构成的离散点组成。 实验条件设定为车辆初始速度70km/h,并在此条件下评估了系统的性能表现:结果显示在侧向位移跟踪及纵向车速跟随方面均表现出良好的效果,尽管后者存在一定的误差;同时,在质心侧偏角和四个车轮转角控制上也达到了预期目标。整个过程中,控制系统能够连续且稳定地工作。 该研究使用Matlab Simulink 2021a与Carsim 2019.0软件进行仿真验证,并提供了详细的视频演示以帮助初学者理解这一复杂技术的实际应用情况。如有兴趣深入探讨相关细节或寻求更多资源,请通过邮件方式联系作者。
  • 辅助功能开发之篇(02)——基于滑模代码
    优质
    本篇文章详细探讨了在汽车辅助驾驶系统中基于滑模理论的纵向控制算法,并提供了相应的代码实现。 纵向滑膜控制-可参考文章《辅助驾驶功能开发-控制篇(02)-基于滑模的纵向控制算法》,详细算法问题交流,请私信联系。
  • 基于CarSim
    优质
    本研究聚焦于利用CarSim仿真平台开发与验证自动驾驶控制系统,涵盖路径规划、车辆动力学分析及传感器融合等关键技术,以提升自动驾驶系统的安全性和可靠性。 本段落介绍了无人驾驶方法的主要控制技术,通过结合车辆动力学软件CarSim与Matlab进行联合仿真,内容涵盖了整车模型及魔术轮胎的构建,并基于动力学原理探讨了无人驾驶车辆的应用。
  • 基于CarSim
    优质
    本研究聚焦于利用CarSim仿真平台开发与验证自动驾驶控制系统,探索提高驾驶安全性和效率的方法。 本段落介绍了无人驾驶技术的主要控制方法,包括使用车辆动力学软件CarSim与Matlab进行联合仿真。具体内容涵盖了整车模型及魔术轮胎的建立、基于动力学的无人驾驶路径跟踪、基于运动学的无人驾驶路径跟踪以及通过轨迹重规划实现无人驾驶车辆避障控制等几个方面。
  • 丛书之汽车决策与PPT.rar
    优质
    本资源为《自动驾驶丛书之自动驾驶汽车决策与控制》配套PPT,涵盖车辆决策算法、控制系统等内容,适合技术学习和研究参考。 自动驾驶系列丛书包含关于自动驾驶汽车决策与控制的PPT内容。