Advertisement

最大化循环平稳性的盲反卷积算法(CYCBD)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
简介:CYCBD是一种创新的盲反卷积算法,旨在通过优化信号处理流程中的循环平稳性来提高分离效果和效率,适用于复杂噪声环境下的高精度信号恢复。 代码文件简介: - MaxCycloBD.m:该函数通过找到使输出的循环平稳性最大化的最佳逆滤波器(FIR形式),对单输入单输出系统的信号x进行盲解卷积。 - MaxCycloBD_SIMO.m:该函数通过找到使输出的循环平稳性最大化的最佳逆滤波器(FIR形式),对单输入多输出系统中的多个信号x进行同时盲解卷积处理。 - MaxCycloBDangle.m:此函数在角度时间域中定义加权矩阵,以寻找能使单输入单输出系统的信号x的循环平稳性最大化的最佳逆滤波器(FIR形式)。 - demo_CYCBD.m:该交互式脚本展示了前述几种功能的不同应用实例,包括从含有噪声的观测信号中提取出具有循环平稳性的源,并考虑各种干扰因素的影响。 test_signals文件夹里包含六种不同的仿真信号。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • (CYCBD)
    优质
    简介:CYCBD是一种创新的盲反卷积算法,旨在通过优化信号处理流程中的循环平稳性来提高分离效果和效率,适用于复杂噪声环境下的高精度信号恢复。 代码文件简介: - MaxCycloBD.m:该函数通过找到使输出的循环平稳性最大化的最佳逆滤波器(FIR形式),对单输入单输出系统的信号x进行盲解卷积。 - MaxCycloBD_SIMO.m:该函数通过找到使输出的循环平稳性最大化的最佳逆滤波器(FIR形式),对单输入多输出系统中的多个信号x进行同时盲解卷积处理。 - MaxCycloBDangle.m:此函数在角度时间域中定义加权矩阵,以寻找能使单输入单输出系统的信号x的循环平稳性最大化的最佳逆滤波器(FIR形式)。 - demo_CYCBD.m:该交互式脚本展示了前述几种功能的不同应用实例,包括从含有噪声的观测信号中提取出具有循环平稳性的源,并考虑各种干扰因素的影响。 test_signals文件夹里包含六种不同的仿真信号。
  • 运动模糊:MotionBlur
    优质
    运动模糊盲反卷积:MotionBlur算法介绍了一种先进的图像处理技术,旨在自动移除照片中的运动模糊效果,恢复清晰画面。该算法通过深度学习和计算机视觉方法,无需事先了解模糊类型或参数即可实现高效去模糊,广泛应用于摄影后期、视频监控及医疗影像分析等领域。 该项目的目标是消除手持摄像机拍摄过程中因抖动造成的运动模糊问题,并且无需事先了解图像的模糊情况就能自动处理。项目采用卷积神经网络来估计这种由相机移动引起的模糊,然后使用该估计信息校准反卷积算法。 项目分为两个主要部分: - 图像处理模块:包含用于去模糊化的反卷积算法及正向模型。 - 模糊度估算模块:利用深度学习中的神经网络进行运动模糊的识别和量化。 自2020年5月起,该项目得到了重启。我们决定从TensorFlow平台切换到PyTorch,并计划将处理范围扩展至更复杂的非线性运动造成的模糊效果以及空间变化的情况。此外还打算将其应用拓展至电视画面去模糊领域。 目前(截至2020年5月),项目已经能够利用维纳滤波器技术有效解决由简单直线移动导致的图像模糊问题。 安装方法: 在您选择的conda环境中,请运行以下命令进行安装: ``` pip install -e . ```
  • 离散序列线
    优质
    本文探讨了离散序列的线性卷积和循环卷积的计算方法及其相互关系,旨在为信号处理领域提供有效的算法支持。 利用此Matlab程序可以计算离散序列的线性卷积和循环卷积。
  • 检测
    优质
    循环平稳特性检测专注于研究和开发用于识别信号是否具备循环平稳特性的方法和技术,对于通信工程、雷达信号处理等领域具有重要意义。 循环平稳特征检测与弱信号检测的代码具有清晰明确的注释,易于理解。
  • 基于FFT线与分析
    优质
    本研究探讨了利用快速傅里叶变换(FFT)进行高效计算线性卷积及循环卷积的方法,并对其原理进行了深入分析。 利用FFT计算并分析线性卷积与循环卷积。
  • Matlab中存档代码:(Blind-deconvolution)
    优质
    本段代码实现了一种基于MATLAB的盲反卷积算法,旨在不依赖原始图像和点扩散函数的情况下恢复清晰图像。适用于天文摄影、医学影像处理等领域。 在MATLAB中实现盲反卷积算法涉及使用未知模糊内核对图像进行处理以恢复清晰度的过程。我的工作主要基于Rob Fergus的相关研究及其实施方案。为了提取清晰的图像,我们首先需要估算出模糊核。这一过程假设模糊核值具有指数先验分布,并利用最大后验(MAP)估计方法来计算。 理想情况下,在确定了后验概率分布之后再应用MAP算法进行后续处理会更为精确。一旦得到了模糊内核的估计结果,接下来使用Richardson-Lucy非盲反卷积算法获取图像中每个像素的真实值以实现最终锐化效果。我在文章里详细描述了这个过程。 在实践中,可以只选取特定区域作为输入来对局部进行增强处理而非整个图片,例如仅令瓶子部分更清晰而背景保持模糊的状态。下面是执行这一系列操作的具体步骤: 1. 将待处理的模糊图像复制到名为“images”的文件夹内(如ian1.jpg)。 2. 复制结果/目录下的一个示例脚本并重命名为与新图片对应的名称,例如在Linux系统中可以使用命令`cp ian1.m ian2.m`来完成该操作; 3. 对新的图像处理脚本进行编辑,比如修改变量obs_im的值为新的文件名(如 obs_im = ../images/ian2.jpg)。 按照上述步骤执行即可实现对任意模糊图片的有效局部或整体锐化。
  • 层可视
    优质
    简介:本文介绍了一种用于卷积神经网络中卷积层可视化的新技术——反卷积方法。通过该方法,可以清晰地展示和理解特征图中的信息,从而进一步优化模型结构与性能。 反卷积(Deconvolution)的概念最早出现在Zeiler于2010年发表的论文《Deconvolutional networks》中,但当时并未使用这一术语。正式采用“反卷积”一词是在后续的研究工作《Adaptive deconvolutional networks for mid and high level feature learning》中提出的。随着反卷积在神经网络可视化中的成功应用,越来越多的研究开始采纳这种方法,例如场景分割和生成模型等领域。此外,“反卷积(Deconvolution)”还有其他称呼,如“转置卷积(Transposed Convolution)”或“分数步长卷积(Fractional Strided Convolution)”。
  • 基于MATLAB图像恢复实现
    优质
    本研究利用MATLAB平台,开发了一种高效的盲反卷积方法,旨在解决图像退化问题,实现了高质量的图像恢复效果。 盲反卷积算法复原图像的MATLAB实现包含详细的注释和解释,便于读者理解。
  • 基于Matlab图像恢复实现
    优质
    本研究采用MATLAB平台,提出并实现了先进的盲反卷积技术,有效解决图像退化问题,显著提升了图像清晰度和细节还原能力。 盲反卷积算法复原图像的MATLAB实现包含详细的注释和解释,方便读者理解。