Advertisement

SEMI E4 规范

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《SEMI E4规范》是半导体行业内广泛采用的标准文件之一,主要规定了晶圆盒在半导体制造和测试过程中的尺寸、材料及性能要求,确保行业内的兼容性和互操作性。 SEMI E4标准定义了半导体设备HOST端口与上层系统(如EAP)之间的串行通信协议SECS-I。该标准并未规定数据格式,而由E5标准来定义数据格式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SEMI E4
    优质
    《SEMI E4规范》是半导体行业内广泛采用的标准文件之一,主要规定了晶圆盒在半导体制造和测试过程中的尺寸、材料及性能要求,确保行业内的兼容性和互操作性。 SEMI E4标准定义了半导体设备HOST端口与上层系统(如EAP)之间的串行通信协议SECS-I。该标准并未规定数据格式,而由E5标准来定义数据格式。
  • SEMI E4-0699.pdf
    优质
    SEMI E4-0699.pdf是一份由半导体设备和材料国际协会(SEMI)发布的行业标准文档,详细规定了适用于半导体制造设备的技术规范。 SEMI E4-0699标准文档介绍了SECS-I(半导体设备通信标准1消息传输)规范,这是用于交换消息的接口技术规范,连接了半导体加工设备与主机系统之间。该标准最初于1980年发布,并在1999年进行了重要修订。北美信息和控制委员会以及日本电子工业发展协会设备通讯委员会共同负责此文档的技术责任。 SECS-I涵盖了通过串行点对点数据路径进行消息交换所需的物理连接器、信号电平、数据速率及逻辑协议,但不定义具体的消息内容;这些细节由如SEMI E5等其他标准来规定。该规范适用于晶圆制造设备和相关主机系统间的通信。 修订版历史记录在附录1中,并且每次更新都保留了最初的意图:为独立制造商提供一种方法,让其生产的设备或主机无需深入了解彼此便能实现连接,从而促进不同厂家的设备无缝集成到生产线中。SECS-I被视为点对点通讯的一种分层协议。 物理链接层定义了半导体加工设备与主机之间所有必要的硬件细节;块传输协议确保数据在物理层面可靠地传送;消息协议规范了如何构建和解析包含指令及数据的消息,以实现二者间的有效通信。 此标准并未规定内部信息的具体格式或内容。这意味着需要额外的标准来解释消息的结构及其可能的数据类型(如SECS-II)。此外,它不依赖于特定的速度要求满足所有通讯需求。 综上所述,SECS-I旨在定义一种稳定、可靠且开放的消息交换机制,以实现设备与主机间的有效沟通,并确保不同厂家生产的半导体制造设备能够互操作。这一规范是自动化生产过程中的关键组成部分,有助于精确控制和监控制造流程。
  • SEMI E5-1104 SEMI设备通信标准第2条消息...
    优质
    本规范详细阐述了SEMI E5-1104中第二条消息的相关标准,旨在促进半导体制造设备间的数据交换和通信的一致性与效率。 ### SEMI E5-1104 标准概述 SEMI E5-1104 标准规定了半导体设备通信标准II(SECS-II)的消息内容格式及结构,这是一种广泛应用于半导体制造设备与上位机系统之间的数据交换协议。该标准由全球信息与控制委员会技术批准,并由北美信息与控制委员会直接负责。本标准最初发布于1982年,最后一次更新是在2004年7月。 ### 目的 SEMI E5-1104 标准的主要目的是定义一种标准化通信方式,使半导体制造设备能够高效地与其工厂自动化系统进行数据交换。这包括设备状态报告、控制命令和诊断信息等的传输。 ### 范围 本标准涵盖了SECS-II通信协议的消息格式、数据结构以及流与功能的具体定义等内容,并适用于所有采用SECS-II标准进行通信的半导体制造设备及其控制系统。 ### 局限性 SEMI E5-1104 标准并不涵盖具体的实现细节和技术规范,这些内容可能因制造商的不同而有所差异。此外,对于涉及专利技术的部分(如Stream 4),用户需自行判断是否存在侵犯专利的风险。 ### 引用标准 该标准中引用了其他相关的SEMI标准,以确保整个通信协议的一致性和兼容性。 ### 消息传输协议 1. **意图**:定义消息传输的基本规则,确保数据能够准确无误地从发送方传递到接收方。 2. **消息结构**:包括消息头和消息体两部分。其中,消息头包含了类型、长度等基本信息;消息体则包含实际的数据内容。 3. **阻塞要求**:为了保证消息传输的正确性,标准中规定了某些特定情况下需要进行的操作。 4. **事务超时**:为避免无限等待,定义了发送后等待响应的时间限制。 5. **多事务打开**:允许同时存在多个未完成的事务,并遵循一定的规则以防止冲突。 ### 流与功能 1. **流**:SECS-II中的流是指一系列具有相同性质的消息序列。例如,Stream 0用于基本通信测试,Stream 1用于设备状态报告等。 2. **功能**:每个流下包含多个不同的功能来区分不同类型的操作或查询。例如,在Stream 1中,Function 1表示请求设备状态。 3. **分配规则**:通过不同的流和功能组合满足各种通信需求。 ### 事务与会话协议 1. **意图**:定义了处理机制以确保每次交互都能得到正确的响应。 2. **事务定义**:描述了一次完整的通信过程,包括请求和响应两个阶段。 3. **规则要求**:为保证事务的一致性和完整性而规定了一系列必须遵守的规则。 4. **会话协议**:定义设备与上位机之间的长期连接规则,包括建立、维护和关闭的过程。 ### 数据结构 1. **意图**:定义了SECS-II消息中数据的组织形式以利于解析和处理。 2. **项(Item)**:是构成数据的基本单元,可以是数值或字符串等类型的数据。 3. **列表(List)**:由一个或多个项组成,用于表达复杂的数据结构。 4. **本地化字符字符串项(Localized Character String Items)**:存储带有语言标签的文本信息。 5. **示例**:提供了具体数据结构的例子以帮助理解如何组织和解释SECS-II消息中的数据。 6. **字典定义**:为每种数据类型定义了一个标识符,便于引用。 ### 消息详情 1. **意图**:详细描述了不同流和功能的具体应用场景及相应的消息格式。 2. **Stream 0 和 Function 0**:用于测试连接是否正常,并通常不携带实际数据。 3. **设备状态报告(Stream 1)**:提供关于设备当前运行状态的信息,包括报警状态、故障代码等。 4. **设备控制与诊断(Stream 2)**:用于远程操作和查询内部诊断信息。 5. **材料状态报告(Stream 3)**:报告原材料的状态,如库存水平、批次信息等。 6. **材料控制指令(Stream 4)**:涉及移动分配等操作命令。 7. **异常处理机制(Stream 5)**:定义了设备故障和通信错误等情况下的处理流程。 8. **数据收集(Stream 6)**:用于收集各种生产数据、性能参数等信息。 9. **程序管理(Stream 7)**:涉及工艺程序的上传下载执行操作。 10. **控制程序传输(Stream 8)**:用于传输设备运行所需的代码。 11. **系统错误报告机制(Stream 9)**。 12. **终止会话协议(Stream
  • SEMI-S2 半导体制造设备安全
    优质
    《SEMI-S2》是半导体行业的重要标准之一,专注于半导体制造设备的安全性,旨在减少生产过程中的风险,保障人员与设备的安全。 SEMI-S2半导体制程设备安全准则规定了在半导体制造过程中确保设备安全的操作规范和要求。
  • SEMI S2 半导体制造设备安全
    优质
    《SEMI S2》是半导体行业的重要标准之一,专注于设备及系统的安全设计与操作实践,旨在保障生产环境中的人员和资产安全。 SEMI S2半导体制程设备安全准则为这类设备提供了一套实用的环保、安全和卫生标准。
  • 基于SEMI标准的半导体设备
    优质
    本文章聚焦于SEMI标准在半导体设备领域的应用与实施,深入探讨了如何通过遵循这些国际通用准则来优化设备的设计、制造和测试流程。旨在推动行业标准化进程,促进全球半导体产业健康发展。 半导体设备标准是指在设计、制造以及使用半导体生产设备过程中所遵循的安全指南与规范,这些标准由SEMI(即国际半导体设备与材料协会)制定并发布,其主要目标在于确保整个生产流程中的安全性和可靠性。 其中,《SEMI S8-0308:用于半导体制造装备的人体工学工程安全性指导原则》是SEMI公布的一份重要文件。这份文档详细阐述了在设计这类生产设备时需考虑的人机交互因素及人体工学设计理念,以期达到设备与操作人员之间的最佳匹配度,在实际生产环境中提升工作效率的同时确保员工的安全。 该标准的主要内容涵盖以下几点: 1. 设备的设计原则:强调安全性是首要考量,并提倡任务的合理分配——即在硬件、软件和用户之间找到最优平衡点; 2. 降低错误及事故发生的可能性:通过优化设备的操作流程,使之更贴合操作者的使用习惯与能力范围,从而减少因疲劳或不熟悉而引发的风险; 3. 注重人体工学设计的应用:确保所有机械设备的设计都能最大程度地适应人的生理特点和工作需求,以减轻长时间作业给员工带来的身体负担。 此外,《SEMI S8-0308》还特别指出了一些细节问题: * 文档中所使用的官方测量单位为国际标准制(SI),其他非主要参考的单位则仅供额外信息; * 标记有“NOTE”的部分不属于正式条款,其作用在于辅助理解文档内容,并不意在修改或替代任何既定的安全指导方针。 综上所述,《SEMI S8-0308》对于规范半导体制造设备的设计、生产和操作具有重要意义,有助于提升整个行业的安全性能与生产效率。
  • 基于SEMI E37协议SEMI SECS/SECS-I/SECS-II/GEM/HSMS程序开发
    优质
    本项目依据SEMI E37标准进行研发,专注于开发SEMI SECS/I/II、GEM及HSMS通信协议的软件程序,旨在优化半导体制造设备的互联与数据交换。 C# SECS HSMS编程涉及在工业自动化领域使用特定的通信协议进行设备间的交互。SECS(SEMI Equipment Communications Standard)与HSMS(SECS over TCP/IP Message Signaling Method)是半导体制造行业中常用的通信标准,用于实现工厂控制系统和生产设备之间的数据交换。 编写此类程序时需要熟悉相关的消息格式、编码规则以及网络编程的基础知识。开发者通常会参考官方文档或开源项目来获取必要的信息和支持。通过C#语言可以灵活地创建适用于不同应用场景的解决方案,并且能够利用.NET框架中的类库简化开发过程,提高代码的质量和可维护性。 此外,在实现具体功能时还需要考虑到错误处理、性能优化等方面的问题,以确保系统的稳定性和可靠性。
  • UFS2.2
    优质
    UFS2.2是通用闪存存储的一种标准规范,它提供了高效的性能和低功耗特性,广泛应用于移动设备中。 **UFS2.2规范详解** UFS(Universal Flash Storage)是一种高速、低功耗的通用闪存存储标准,由JEDEC固态技术协会制定。UFS2.2是这一系列标准中的最新版本,旨在定义UFS接口和存储器件的电气特性,确保设备间的兼容性和互换性,并提升数据传输速度及系统性能。 ### UFS2.2的主要特点 1. **兼容性与扩展性**:该规范继承并扩展了之前的UFS2.1标准,保持向后兼容性,使旧设备能在新环境中正常运行。同时,它还包括eMMC(嵌入式多媒体卡)标准的特性集,意味着UFS设备能够兼容eMMC标准,为制造商提供更大的灵活性。 2. **WriteBooster特性**:UFS2.2引入了一项名为WriteBooster的新技术,旨在优化写入性能。通过这一功能,UFS设备能显著提高写入速度,缩短大文件传输时间,在大数据处理和频繁写入操作的应用场景中尤为有利。 3. **高性能与低功耗**:该版本继续提高了读写速度,并提供了更高的数据传输速率(通常可达11.6Gbps),相比UFS2.1有显著提升。同时,它通过更精细的电源管理策略,在保持高速度的同时进一步降低了设备在待机和工作状态下的能耗。 4. **多队列与并行操作**:UFS2.2支持多个命令和数据队列,允许设备同时处理多个请求,实现了数据传输的并行化,大大提升了系统响应速度及整体效率。 5. **错误校验与可靠性**:该规范包括强大的错误检测和纠正机制(如CRC循环冗余校验和ECC错误校验码),确保了在传输过程中的完整性和准确性,并提高了存储系统的可靠性。 6. **协议增强**:UFS2.2改进了协议层,增强了设备的命令调度及资源管理能力,减少了延迟并提升了系统性能。 ### 应用领域 该标准广泛应用于高端智能手机、平板电脑、笔记本电脑和智能电视等移动设备中。其高速读写能力和低功耗特性使其成为高性能移动产品的理想选择。 ### 结论 UFS2.2规范的发布不仅增强了移动设备存储系统的性能,还简化了制造商的设计流程,并通过兼容eMMC标准降低了开发成本。WriteBooster功能进一步强化了UFS的优势,满足用户对更快数据传输速度的需求。随着技术的发展,该版本将继续引领移动存储领域进步,推动相关产品向更高性能及更低功耗方向发展。
  • scenario-e4-swtbot-integration-example
    优质
    这是一个关于SWTBot集成的示例场景(e4版本),主要用于展示如何在Eclipse RCP e4应用程序中进行自动化测试。 结合使用场景与SWTBot来测试并记录Eclipse RCP e4示例应用程序的实例可以在plugins/org.scenarioo.example.e4.test/src/org/scenarioo/example/e4文件夹中找到。 构建及运行方法如下:执行shell脚本start-tycho-build.sh。此命令会构建完整的eclipse rcp产品,并执行UI SwtBot测试。需要注意的是,SWTBot测试在Linux机器上可以正常运行;但在Windows系统上的表现可能存在问题,而Mac OS则有可能能够成功运行。
  • JESD与MSL测试
    优质
    本文将详细介绍JEDEC标准和MSL测试规范的相关内容,包括其定义、应用范围以及在电子制造业中的重要性。通过深入解析这些行业标准,帮助读者理解如何确保产品的可靠性和兼容性。 JESD规范-MSL测试规范!JESD规范-MSL测试规范!JESD规范-MSL测试规范!JESD规范-MSL测试规范!