Advertisement

激光雷达点云中的障碍物检测.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于利用激光雷达技术获取的点云数据进行障碍物识别与分类,旨在提高自动驾驶车辆的安全性和导航精度。 激光雷达点云障碍物检测技术能够精确识别环境中的障碍物,对于自动驾驶、机器人导航等领域具有重要意义。通过分析激光雷达采集到的三维点云数据,可以有效提取出道路或工作区域内的静态与动态障碍物信息,从而为系统决策提供关键支持。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .rar
    优质
    本研究聚焦于利用激光雷达技术获取的点云数据进行障碍物识别与分类,旨在提高自动驾驶车辆的安全性和导航精度。 激光雷达点云障碍物检测技术能够精确识别环境中的障碍物,对于自动驾驶、机器人导航等领域具有重要意义。通过分析激光雷达采集到的三维点云数据,可以有效提取出道路或工作区域内的静态与动态障碍物信息,从而为系统决策提供关键支持。
  • 利用MATLAB进行分割及方法.rar
    优质
    本资源提供了一种基于MATLAB的激光雷达点云处理技术,重点介绍了点云分割与障碍物检测方法,适用于自动驾驶和机器人导航等领域研究。 基于MATLAB实现的激光雷达点云分割和障碍物检测方法能够有效处理来自激光雷达传感器的数据,通过算法将复杂的三维空间中的物体进行精确划分,并识别出潜在的障碍物,为自动驾驶等应用场景提供关键信息支持。这种方法利用了MATLAB强大的数据处理能力和丰富的工具箱资源,实现了高效、准确的点云分析与目标检测功能。
  • STM32F407高度定位(超声波)与).rar
    优质
    本资源为STM32F407微控制器应用案例,涵盖高精度定位技术与避障功能设计。通过集成超声波传感器和激光雷达,实现复杂环境下的精准定位及障碍物识别。 采用STM32F407串口1接收TFMINI_PLUS数据并解码,串口2接收超声波GY_US42数据并解码,并将两者数据通过串口3发送到其他开发板。在自测板上测试成功,如果要在正点原子开发板使用,则只需修改usart.c文件中对应的引脚配置。
  • 利用进行和跟踪.pdf
    优质
    本文探讨了如何运用激光雷达技术实现对移动物体的有效检测与精确跟踪,为自动驾驶及机器人导航提供关键技术支持。 《基于激光雷达的障碍物检测与跟踪》是西南交通大学曾文浩同学的工程硕士学位论文,主要探讨了在无人驾驶系统中利用激光雷达进行障碍物检测与跟踪的技术问题。该研究对于提升无人车辆的安全行驶能力具有重要意义,因为环境感知技术的准确性和实时性直接决定了无人驾驶车辆的行驶安全。 激光雷达(Light Detection and Ranging, LiDAR)是一种关键传感器,能够获取周围环境的三维信息,为无人驾驶提供精确的数据支持。与相机相比,激光雷达不受光照条件影响,并且比毫米波雷达具有更高的精度和分辨率,特别适用于主动防撞系统。然而,处理来自激光雷达的大数据量点云时需要解决算法实时性不足及适用性不强的问题。 论文的主要贡献包括: 1. 设计了用于两台激光雷达之间的坐标系标定的算法:利用NDT(Normal Distributions Transform)匹配方法计算旋转和平移变换矩阵,实现坐标一致性。 2. 提出了一个高效的障碍物检测方案:通过极坐标栅格法去除地面点数据以减少无关信息。改进DBSCAN算法并提出自适应搜索参数和“代表点”生长法结合最小包裹矩形来拟合三维边框进行特征提取。 3. 开发了激光雷达目标跟踪技术:针对JPDAF(Joint Probabilistic Data Association Filter)算法的局限性,简化确认矩阵减少小概率事件的发生,提高效率。同时引入自适应滤波器对环境中的障碍物进行持续追踪,并设计跟踪管理器维护更新运动信息。 4. 在硬件和软件方面进行了配置与开发:使用C++编写代码,在实际城区道路及园区环境中测试了所提出的障碍物检测与跟踪算法的性能表现。 该论文的研究显示,通过优化相关技术和策略可以显著提高激光雷达在无人驾驶系统中的应用效果。这不仅增强了系统的实时性和准确性,也为推动无人驾驶技术的实际落地提供了理论基础和实践经验指导。
  • 基于机器人控制系统开发
    优质
    本项目致力于开发一种先进的机器人控制系统,该系统通过集成激光雷达技术实现高效的环境感知与障碍物检测。旨在提升机器人的自主导航能力和安全性。 0 引 言 移动机器人是一种能够在复杂环境中感知外部环境,并通过动态决策与规划实现避障等功能的综合系统。该系统通常包括机构本体和控制系统两部分,其中控制系统负责根据用户指令操作和控制机械结构。随着机器人的智能化水平不断提升,其控制器需要具备便捷、灵活的操作方式以及多种控制模式,并且要具有高度可靠性和实时性。 为了确保系统的高效运行并简化软件设计流程,在机器人控制系统中引入嵌入式操作系统显得尤为重要。本项目将嵌入式技术与机器人技术相结合,采用ARM硬件平台搭载μC/OS-Ⅱ嵌入式实时操作系统开发了具备多线程和多任务管理能力的控制终端。通过这种方式,可以显著提升系统的运行效率及稳定性。
  • 基于机器人控制系统开发
    优质
    本项目致力于研发一种基于激光雷达技术的智能机器人控制系统,专注于实现高效且精准的障碍物识别与避障功能。该系统通过先进的算法处理传感器数据,优化机器人的环境感知能力,确保其在复杂环境中安全、灵活地运行。旨在推动服务型及工业机器人领域的发展和应用。 根据新型激光雷达跟踪测量理论,我们开发并研制了一种基于μC/OS-Ⅱ的机器人实时控制系统。该系统已经在实验室自主开发的足球机器人上成功应用。
  • 基于三维实时与可通行区域
    优质
    本研究利用三维激光雷达技术开发了一种高效的实时障碍物及可通行区域检测系统,适用于自主导航领域。 针对交通环境中障碍物及可通行区域检测的问题,本段落提出了一种改进的欧氏聚类算法进行实时障碍物检测,并设计了一种相邻点云间距算法以提取道路的可通行区域。首先对点云数据进行了预处理,然后利用地面坡度分离算法区分了地面和非地面点云;接着根据不同的聚类距离阈值对非地面点云进行障碍物聚类检测,并用长方体框标记不同物体。通过将每个激光束固有的相邻点云间距与实际的两点间距离对比,并结合相邻点的角度差以及点云分类,实现了可通行区域的有效提取;最后融合了障碍物检测和可通行区域提取的结果,对通过性进行了合并检测。 经过多路况实车实验验证,该算法能够准确地识别出障碍物及道路的可通行区域。其平均检测精度为94.13%,耗时仅为69毫秒,完全满足智能车辆实时性的需求。
  • Harris角
    优质
    本研究探讨了Harris角点检测算法在识别图像中关键特征点的应用,并创新性地将其应用于移动机器人上的障碍物检测系统,提高机器人的自主导航能力。 自动检测图片中的障碍物可以通过Harris角点检测来确定一个障碍物角落处的点。开发者可以将样本照片替换为其他图像,并且也可以调整代码以实现实时监测功能。
  • 分类1
    优质
    本研究聚焦于激光雷达技术产生的点云数据分类方法探讨与分析,旨在提升自动化及智能化环境感知能力。 激光雷达点云聚类是指对通过激光雷达设备获取的三维空间中的点进行分类处理的技术。这一过程通常包括分割、识别以及提取具有特定特征或属性的点集,以便进一步分析或者应用到自动驾驶、机器人导航等领域中去。 在实际操作过程中,首先需要采集环境数据生成密集的点云图;然后通过算法对这些海量的数据进行有效的筛选和归类,以实现目标物体检测等功能。常用的聚类方法包括基于距离的DBSCAN算法等,这类技术能够帮助提高识别精度与效率,在智能交通系统中发挥着重要作用。 以上就是关于激光雷达点云聚类的基本介绍及其应用价值概述。
  • 基于高度差数据方法
    优质
    本研究提出了一种利用高度差信息进行雷达数据处理的方法,有效提升了复杂环境下的障碍物检测精度与可靠性。 采用高度差法对雷达数据进行障碍物识别。