Advertisement

一维稳态对流扩散问题的有限体积法求解

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了一维稳态对流扩散问题的数值解法,采用有限体积法进行分析与计算。通过该方法,能够有效处理浓度分布及物质传输过程中的复杂情况。 有限体积法可以用于求解一维和二维的对流扩散问题。对于一维稳态问题,采用中心差分方法并与解析解进行比较。此外,还讨论了一维稳态情况下的乘方格式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了一维稳态对流扩散问题的数值解法,采用有限体积法进行分析与计算。通过该方法,能够有效处理浓度分布及物质传输过程中的复杂情况。 有限体积法可以用于求解一维和二维的对流扩散问题。对于一维稳态问题,采用中心差分方法并与解析解进行比较。此外,还讨论了一维稳态情况下的乘方格式。
  • 和二
    优质
    本研究探讨了一维及二维对流扩散问题的数值解法,采用有限体积法进行模拟与分析,旨在提高计算效率与精度。 有限体积法用于求解一维和二维的对流扩散问题。对于一维稳态问题,采用中心差分方法,并与解析解进行比较。
  • 瞬时
    优质
    本研究探讨了一维瞬时对流扩散问题的数值解法,采用有限体积法进行求解,分析了该方法在处理此类问题中的准确性和稳定性。 在与一维非稳态扩散问题相同的初始条件和边界条件下进行研究,采用乘方格式,并设定时间步长为0.001秒。初始温度场设为200℃,速度为2米/秒,长度为2厘米,在t=0时刻东侧的温度突然降至0℃。时间差分则使用全隐式格式。
  • FVD_基于传热
    优质
    本文介绍了基于流体体积法(FVM)的有限体积方法在解决传热问题中的应用,探讨了其理论基础和实践案例。 流体力学中的有限体积法求解可以使用MATLAB程序实现。
  • 基于方程分析
    优质
    本研究采用有限体积法探讨对流扩散方程,旨在精确模拟物质传输过程中的浓度分布。通过数值实验验证方法的有效性和准确性。 本段落介绍了一种使用有限体积法求解二维对流扩散方程的C++程序,并通过离散化网格最终计算出温度场。该程序在Visual Studio环境下运行。
  • FVD_基于传热.zip
    优质
    本资源提供了一种采用流体体积法解决复杂几何形状中热量传递问题的有限体积方法代码和文档,适用于工程仿真与研究。 FVD_流体体积法_有限体积_有限体积法_有限体积法求解传热.zip
  • 基于C++方程上风格式差分
    优质
    本研究运用C++编程实现了一维对流扩散方程的上风格式有限差分方法,探讨了该算法在不同条件下的数值稳定性与准确性。 求解一维对流扩散方程的有限差分方法(上风格式)C++编程实现。
  • 方程差分(convection-diffusion2)
    优质
    本文探讨了利用有限差分法解决对流扩散方程的有效方法,分析了几种经典方案的优势与局限性,并提出改进策略以提高数值计算精度。 对流扩散方程的有限差分求解采用迎风格式进行空间离散,并使用向前差分格式(显示格式)处理时间离散。
  • 基于Simple算在方腔.doc
    优质
    本文采用Simple算法结合有限体积法对方腔流动问题进行数值模拟与分析,探讨该方法在处理复杂流动现象时的有效性和准确性。 使用Simple算法的有限体积法离散求解方腔流问题。
  • 7.1 采用差分炉墙
    优质
    本研究采用有限差分法探讨炉墙在稳态条件下的热流分布,通过数值模拟方法分析温度场与热传导特性。 本节将探讨如何使用有限差分法计算通过炉墙的稳定态热流问题。这是一个二维稳态传热实例,涉及无内热源、直角坐标系、矩形网格以及狄利克雷边界条件与对流边界条件的应用。 首先考虑一个小型炉子截面图,其炉墙内部温度设定为1200℃,外部通过空气进行冷却。周围介质的温度是20°C,表面传热系数设为10 W/(m²·K),而材料导热系数则定为0.7 W/(m·K)。 由于该炉子具有对称性特点,我们只需分析其一半区域,并将结果乘以8来获得整个系统的热损失。在构建有限差分方程时,不需要单独处理每个节点的温度计算问题。对于内部节点(如2,4),依据能量守恒原理,从相邻节点流入该点的净热量为零,这导致了一个关于相邻节点温度的线性组合方程式:\( \sum_{j} k A \Delta x (\frac{T_{i+1,j}-T_{i,j}}{\Delta x}) + \sum_{i} k A \Delta y (\frac{T_{i,j+1}-T_{i,j}}{\Delta y}) = 0 \)。 对于壁角节点(如1,1),除了导热之外,还有对流传热的影响。因此,流入和流出该点的总能量必须平衡:\( h A \Delta x (T_{2,1}-T_{1,1}) + k A \Delta x (\frac{T_{1,2}-T_{1,1}}{\Delta x}) = 0 \)。 对于非壁角边界节点(如1,3),它们受到导热和对流的共同影响,遵循能量守恒原理。其差分方程与内部节点及壁角节点有所不同:\( h A \Delta x (T_{2,3}-T_{1,3}) + k A \Delta x (\frac{T_{1,4}-T_{1,3}}{\Delta x}) + k A \Delta y (\frac{T_{1,3}-T_{2,3}}{\Delta y}) = 0 \)。 通过高斯消去法,可以建立一个线性系统来求解所有内部节点、壁角节点和非壁角边界节点的温度。每个节点的温度被视为未知数,并根据给定的边界条件(如狄利克雷边界与对流边界)确定该系统的右侧值。例如,在点1.1处,其温度受到对流边界的直接影响;而在点1.2至1.6,则是受传热系数和邻近节点的影响。 因此,通过以上方法可以构建一个离散的线性系统,其中包含了内部、壁角以及非壁角边界节点的差分方程。利用高斯消去法或其它数值解算技术,可求得炉墙内每个点的具体温度分布,并进一步计算出稳定态下的热流密度。